The chemotherapy of lymphatic filariasis relies upon drugs such as diethylcarbamazine and ivermectin that largely target the microfilarial stages of the parasite, necessitating continued treatment over the long reproductive life span of the adult worm. The identification of compounds that target adult worms has been a long-term goal of WHO. Here we describe a fluorescence polarization assay for the identification of compounds that target Hsp90 in adult filarial worms. The assay was originally developed to identify inhibitors of Hsp90 in tumor cells, and relies upon the ability of small molecules to inhibit the binding of fluorescently labelled geldanamycin to Hsp90. We demonstrate that the assay works well with soluble extracts of Brugia, while extracts of the free-living nematode C. elegans fail to bind the probe, in agreement with data from other experiments. The assay was validated using known inhibitors of Hsp90 that compete with geldanamycin for binding to Hsp90, including members of the synthetic purine-scaffold series of compounds. The efficacy of some of these compounds against adult worms was confirmed in vitro. Moreover, the assay is sufficiently sensitive to differentiate between binding of purine-scaffold compounds to human and Brugia Hsp90. The assay is suitable for high-throughput screening and provides the first example of a format with the potential to identify novel inhibitors of Hsp90 in filarial worms and in other parasitic species where Hsp90 may be a target.
References
[1]
Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, et al. (2008) Helminth infections: the great neglected tropical diseases. J Clin Invest 118: 1311–1321. doi: 10.1172/JCI34261
[2]
Hewitt RI, Kushner S, Stewart HW, White E, Wallace WS, et al. (1947) Experimental chemotherapy of filariasis; effect of 1-diethyl-carbamyl-4-methylpiperazine hydrochloride against naturally acquired filarial infections in cotton rats and dogs. J Lab Clin Med 32: 1314–1329.
[3]
Molyneux DH, Bradley M, Hoerauf A, Kyelem D, Taylor MJ (2003) Mass drug treatment for lymphatic filariasis and onchocerciasis. Trends Parasitol 19: 516–522. doi: 10.1016/j.pt.2003.09.004
Bourguinat C, Ardelli BF, Pion SD, Kamgno J, Gardon J, et al. (2008) P-glycoprotein-like protein, a possible genetic marker for ivermectin resistance selection in Onchocerca volvulus. Mol Biochem Parasitol 158: 101–111. doi: 10.1016/j.molbiopara.2007.11.017
[6]
Cully DF, Vassilatis DK, Liu KK, Paress PS, Van der Ploeg LH, et al. (1994) Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371: 707–711. doi: 10.1038/371707a0
[7]
Dent JA, Smith MM, Vassilatis DK, Avery L (2000) The genetics of ivermectin resistance in Caenorhabditis elegans. Proc Natl Acad Sci U S A 97: 2674–2679. doi: 10.1073/pnas.97.6.2674
[8]
Grant W (2000) What is the real target for ivermectin resistance selection in Onchocerca volvulus? Parasitol Today 16: 458–459; discussion 501-452. doi: 10.1016/S0169-4758(00)01804-4
[9]
Geary TG, Woo K, McCarthy JS, Mackenzie CD, Horton J, et al. (2009) Unresolved issues in anthelmintic pharmacology for helminthiases of humans. Int J Parasitol.
[10]
Hoerauf A (2008) Filariasis: new drugs and new opportunities for lymphatic filariasis and onchocerciasis. Curr Opin Infect Dis 21: 673–681. doi: 10.1097/QCO.0b013e328315cde7
[11]
Supali T, Djuardi Y, Pfarr KM, Wibowo H, Taylor MJ, et al. (2008) Doxycycline treatment of Brugia malayi-infected persons reduces microfilaremia and adverse reactions after diethylcarbamazine and albendazole treatment. Clin Infect Dis 46: 1385–1393. doi: 10.1086/586753
[12]
Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, et al. (2007) Draft genome of the filarial nematode parasite Brugia malayi. Science 317: 1756–1760. doi: 10.1126/science.1145406
[13]
Kumar S, Chaudhary K, Foster JM, Novelli JF, Zhang Y, et al. (2007) Mining predicted essential genes of Brugia malayi for nematode drug targets. PLoS One 2: e1189. doi: 10.1371/journal.pone.0001189
[14]
Devaney E, O'Neill K, Harnett W, Whitesell L, Kinnaird JH (2005) Hsp90 is essential in the filarial nematode Brugia pahangi. Int J Parasitol 35: 627–636. doi: 10.1016/j.ijpara.2005.01.007
[15]
Workman P, Burrows F, Neckers L, Rosen N (2007) Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci 1113: 202–216. doi: 10.1196/annals.1391.012
[16]
Luo W, Rodina A, Chiosis G (2008) Heat shock protein 90: translation from cancer to Alzheimer's disease treatment? BMC Neurosci 9: Suppl 2S7. doi: 10.1186/1471-2202-9-S2-S7
[17]
Cowen LE, Singh SD, Kohler JR, Collins C, Zaas AK, et al. (2009) Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc Natl Acad Sci U S A 106: 2818–2823. doi: 10.1073/pnas.0813394106
[18]
Taldone T, Sun W, Chiosis G (2009) Discovery and development of heat shock protein 90 inhibitors. Bioorg Med Chem 17: 2225–2235. doi: 10.1016/j.bmc.2008.10.087
[19]
David CL, Smith HE, Raynes DA, Pulcini EJ, Whitesell L (2003) Expression of a unique drug-resistant Hsp90 ortholog by the nematode Caenorhabditis elegans. Cell Stress Chaperones 8: 93–104. doi: 10.1379/1466-1268(2003)8<93:EOAUDH>2.0.CO;2
[20]
Gillan V, Maitland K, McCormack G, Him NA, Devaney E (2009) Functional genomics of hsp-90 in parasitic and free-living nematodes. Int J Parasitol 39: 1071–1081. doi: 10.1016/j.ijpara.2009.02.024
[21]
Piper PW, Panaretou B, Millson SH, Trumana A, Mollapour M, et al. (2003) Yeast is selectively hypersensitised to heat shock protein 90 (Hsp90)-targetting drugs with heterologous expression of the human Hsp90beta, a property that can be exploited in screens for new Hsp90 chaperone inhibitors. Gene 302: 165–170. doi: 10.1016/S0378-1119(02)01102-2
[22]
Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, et al. (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425: 407–410. doi: 10.1038/nature01913
[23]
Taldone T, Gozman A, Maharaj R, Chiosis G (2008) Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr Opin Pharmacol 8: 370–374. doi: 10.1016/j.coph.2008.06.015
[24]
Peroval M, Pery P, Labbe M (2006) The heat shock protein 90 of Eimeria tenella is essential for invasion of host cell and schizont growth. Int J Parasitol 36: 1205–1215. doi: 10.1016/j.ijpara.2006.04.006
[25]
Kumar R, Pavithra SR, Tatu U (2007) Three-dimensional structure of heat shock protein 90 from Plasmodium falciparum: molecular modelling approach to rational drug design against malaria. J Biosci 32: 531–536. doi: 10.1007/s12038-007-0052-x
[26]
Moulick K, Clement CC, Aguirre J, Kim J, Kang Y, et al. (2006) Synthesis of a red-shifted fluorescence polarization probe for Hsp90. Bioorg Med Chem Lett 16: 4515–4518. doi: 10.1016/j.bmcl.2006.06.025
[27]
Chiosis G, Timaul MN, Lucas B, Munster PN, Zheng FF, et al. (2001) A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem Biol 8: 289–299. doi: 10.1016/S1074-5521(01)00015-1
[28]
He H, Zatorska D, Kim J, Aguirre J, Llauger L, et al. (2006) Identification of potent water soluble purine-scaffold inhibitors of the heat shock protein 90. J Med Chem 49: 381–390. doi: 10.1021/jm0508078
[29]
Stiernagle T (2006) Maintenance of C. elegans. WormBook 1–11. doi: 10.1895/wormbook.1.101.1
[30]
Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263: 103–112. doi: 10.1016/S0378-1119(00)00579-5
[31]
Him NA, Gillan V, Emes RD, Maitland K, Devaney E (2009) Hsp-90 and the biology of nematodes. BMC Evol Biol 9: 254. doi: 10.1186/1471-2148-9-254
[32]
Zhang JH, Chung TD, Oldenburg KR (1999) A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen 4: 67–73. doi: 10.1177/108705719900400206
[33]
Du Y, Moulick K, Rodina A, Aguirre J, Felts S, et al. (2007) High-throughput screening fluorescence polarization assay for tumor-specific Hsp90. J Biomol Screen 12: 915–924. doi: 10.1177/1087057107306067
[34]
Taldone T, Chiosis G (2009) Purine-scaffold hsp90 inhibitors. Curr Top Med Chem 9: 1436–1446. doi: 10.2174/156802609789895737
[35]
Nwaka S, Hudson A (2006) Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov 5: 941–955. doi: 10.1038/nrd2144
Frearson JA, Collie IT (2009) HTS and hit finding in academia - from chemical genomics to drug discovery. Drug Discov Today 14: 1150–1158. doi: 10.1016/j.drudis.2009.09.004
[38]
Sayed AA, Simeonov A, Thomas CJ, Inglese J, Austin CP, et al. (2008) Identification of oxadiazoles as new drug leads for the control of schistosomiasis. Nat Med 14: 407–412. doi: 10.1038/nm1737
[39]
Kato N, Sakata T, Breton G, Le Roch KG, Nagle A, et al. (2008) Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility. Nat Chem Biol 4: 347–356. doi: 10.1038/nchembio.87
[40]
Aguero F, Al-Lazikani B, Aslett M, Berriman M, Buckner FS, et al. (2008) Genomic-scale prioritization of drug targets: the TDR Targets database. Nat Rev Drug Discov 7: 900–907. doi: 10.1038/nrd2684
[41]
Gloeckner C, Garner AL, Mersha F, Oksov Y, Tricoche N, et al. Repositioning of an existing drug for the neglected tropical disease Onchocerciasis. Proc Natl Acad Sci U S A 107: 3424–3429. doi: 10.1073/pnas.0915125107
[42]
Rodina A, Vilenchik M, Moulick K, Aguirre J, Kim J, et al. (2007) Selective compounds define Hsp90 as a major inhibitor of apoptosis in small-cell lung cancer. Nat Chem Biol 3: 498–507. doi: 10.1038/nchembio.2007.10
[43]
Caldas-Lopes E, Cerchietti L, Ahn JH, Clement CC, Robles AI, et al. (2009) Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci U S A 106: 8368–8373. doi: 10.1073/pnas.0903392106
[44]
Vilenchik M, Solit D, Basso A, Huezo H, Lucas B, et al. (2004) Targeting wide-range oncogenic transformation via PU24FCl, a specific inhibitor of tumor Hsp90. Chem Biol 11: 787–797. doi: 10.1016/j.chembiol.2004.04.008
[45]
Neckers L (2007) Heat shock protein 90: the cancer chaperone. J Biosci 32: 517–530. doi: 10.1007/s12038-007-0051-y
[46]
Day JE, Sharp SY, Rowlands MG, Aherne W, Workman P, et al. Targeting the Hsp90 chaperone: synthesis of novel resorcylic acid macrolactone inhibitors of Hsp90. Chemistry 16: 2758–2763. doi: 10.1002/chem.200902766
[47]
Shelton SN, Shawgo ME, Matthews SB, Lu Y, Donnelly AC, et al. (2009) KU135, a novel novobiocin-derived C-terminal inhibitor of the 90-kDa heat shock protein, exerts potent antiproliferative effects in human leukemic cells. Mol Pharmacol 76: 1314–1322. doi: 10.1124/mol.109.058545
[48]
Allan RK, Mok D, Ward BK, Ratajczak T (2006) Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization. J Biol Chem 281: 7161–7171. doi: 10.1074/jbc.M512406200
[49]
Chen SN, Howells RE (1979) The uptake in vitro of dyes, monosaccharides and amino acids by the filarial worm Brugia pahangi. Parasitology 78: 343–354. doi: 10.1017/S0031182000051209
[50]
Howells RE, Mendis AM, Bray PG (1983) The mode of action of suramin on the filarial worm Brugia pahangi. Parasitology 87 (Pt 1): 29–48. doi: 10.1017/S0031182000052392
[51]
Sheehy BA, Ho NF, Burton PS, Day JS, Geary TG, et al. (2000) Transport of model peptides across Ascaris suum cuticle. Mol Biochem Parasitol 105: 39–49. doi: 10.1016/S0166-6851(99)00161-9
[52]
Neckers L, Tatu U (2008) Molecular chaperones in pathogen virulence: emerging new targets for therapy. Cell Host Microbe 4: 519–527. doi: 10.1016/j.chom.2008.10.011