Background Intestinal parasitic nematode diseases are one of the great diseases of our time. Intestinal roundworm parasites, including hookworms, whipworms, and Ascaris, infect well over 1 billion people and cause significant morbidity, especially in children and pregnant women. To date, there is only one drug, albendazole, with adequate efficacy against these parasites to be used in mass drug administration, although tribendimidine may emerge as a second. Given the hundreds of millions of people to be treated, the threat of parasite resistance, and the inadequacy of current treatments, new anthelmintics are urgently needed. Bacillus thuringiensis (Bt) crystal (Cry) proteins are the most common used biologically produced insecticides in the world and are considered non-toxic to vertebrates. Methods/Principal Findings Here we study the ability of a nematicidal Cry protein, Cry5B, to effect a cure in mice of a chronic roundworm infection caused by the natural intestinal parasite, Heligmosomoides bakeri (formerly polygyrus). We show that Cry5B produced from either of two Bt strains can act as an anthelmintic in vivo when administered as a single dose, achieving a ~98% reduction in parasite egg production and ~70% reduction in worm burdens when delivered per os at ~700 nmoles/kg (90–100 mg/kg). Furthermore, our data, combined with the findings of others, suggest that the relative efficacy of Cry5B is either comparable or superior to current anthelmintics. We also demonstrate that Cry5B is likely to be degraded quite rapidly in the stomach, suggesting that the actual dose reaching the parasites is very small. Conclusions/Significance This study indicates that Bt Cry proteins such as Cry5B have excellent anthelmintic properties in vivo and that proper formulation of the protein is likely to reveal a superior anthelmintic.
References
[1]
Hotez PJ, Kamath A (2009) Neglected tropical diseases in sub-saharan Africa: review of their prevalence, distribution, and disease burden. PLoS Negl Trop Dis 3: e412. doi:10.1371/journal.pntd.0000412.
[2]
Hotez PJ, Molyneux DH, Fenwick A, Kumaresan J, Sachs SE, et al. (2007) Control of neglected tropical diseases. N Engl J Med 357: 1018–1027. doi: 10.1056/NEJMra064142
[3]
Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, et al. (2006) Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367: 1521–1532. doi: 10.1016/S0140-6736(06)68653-4
[4]
Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, et al. (2008) Helminth infections: the great neglected tropical diseases. J Clin Invest 118: 1311–1321. doi: 10.1172/JCI34261
[5]
Cooper PJ, Chico ME, Losonsky G, Sandoval C, Espinel I, et al. (2000) Albendazole treatment of children with ascariasis enhances the vibriocidal antibody response to the live attenuated oral cholera vaccine CVD 103-HgR. J Infect Dis 182: 1199–1206. doi: 10.1086/315837
[6]
Cooper PJ, Chico M, Sandoval C, Espinel I, Guevara A, et al. (2001) Human infection with Ascaris lumbricoides is associated with suppression of the interleukin-2 response to recombinant cholera toxin B subunit following vaccination with the live oral cholera vaccine CVD 103-HgR. Infect Immun 69: 1574–1580. doi: 10.1128/IAI.69.3.1574-1580.2001
[7]
Smits HL (2009) Prospects for the control of neglected tropical diseases by mass drug administration. Expert Rev Anti Infect Ther 7: 37–56. doi: 10.1586/14787210.7.1.37
[8]
Keiser J, Utzinger J (2008) Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis. JAMA 299: 1937–1948. doi: 10.1001/jama.299.16.1937
[9]
Gunawardena NK, Amarasekera ND, Pathmeswaran A, de Silva NR (2008) Effect of repeated mass chemotherapy for filariasis control on soil-transmitted helminth infections in Sri Lanka. Ceylon Med J 53: 13–16. doi: 10.4038/cmj.v53i1.220
[10]
Adugna S, Kebede Y, Moges F, Tiruneh M (2007) Efficacy of mebendazole and albendazole for Ascaris lumbricoides and hookworm infections in an area with long time exposure for antihelminthes, Northwest Ethiopia. Ethiop Med J 45: 301–306.
[11]
Xiao SH, Hui-Ming W, Tanner M, Utzinger J, Chong W (2005) Tribendimidine: a promising, safe and broad-spectrum anthelmintic agent from China. Acta Trop 94: 1–14. doi: 10.1016/j.actatropica.2005.01.013
[12]
Reynoldson JA, Behnke JM, Pallant LJ, Macnish MG, Gilbert F, et al. (1997) Failure of pyrantel in treatment of human hookworm infections (Ancylostoma duodenale) in the Kimberley region of north west Australia. Acta Trop 68: 301–312. doi: 10.1016/S0001-706X(97)00106-X
[13]
Hu Y, Xiao SH, Aroian RV (2009) The New Anthelmintic Tribendimidine is an L-type (Levamisole and Pyrantel) Nicotinic Acetylcholine Receptor Agonist. PLoS Negl Trop Dis 3: e499. doi:10.1371/journal.pntd.0000499.
[14]
Roh JY, Choi JY, Li MS, Jin BR, Je YH (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 17: 547–559.
[15]
Betz FS, Hammond BG, Fuchs RL (2000) Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regul Toxicol Pharmacol 32: 156–173. doi: 10.1006/rtph.2000.1426
[16]
Wei JZ, Hale K, Carta L, Platzer E, Wong C, et al. (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci U S A 100: 2760–2765. doi: 10.1073/pnas.0538072100
[17]
Kotze AC, O'Grady J, Gough JM, Pearson R, Bagnall NH, et al. (2005) Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock. Int J Parasitol 35: 1013–1022. doi: 10.1016/j.ijpara.2005.03.010
[18]
Cappello M, Bungiro RD, Harrison LM, Bischof LJ, Griffitts JS, et al. (2006) A purified Bacillus thuringiensis crystal protein with therapeutic activity against the hookworm parasite Ancylostoma ceylanicum. Proc Natl Acad Sci U S A 103: 15154–15159. doi: 10.1073/pnas.0607002103
[19]
Behnke JM, Menge DM, Noyes H (2009) Heligmosomoides bakeri: a model for exploring the biology and genetics of resistance to chronic gastrointestinal nematode infections. Parasitology 136: 1565–1580. doi: 10.1017/S0031182009006003
[20]
Behnke JM, Harris P (2009) Heligmosomoides bakeri or Heligmosomoides polygyrus? Am J Trop Med Hyg 804: 684.
[21]
Omura S (2008) Ivermectin: 25 years and still going strong. Int J Antimicrob Agents 31: 91–98. doi: 10.1016/j.ijantimicag.2007.08.023
[22]
Bowman DD (1999) pp. 290–291. Georgis' Parasitology for Veterinarians 7th Edition ed: W.B. Saunders Company.
[23]
Marroquin LD, Elyassnia D, Griffitts JS, Feitelson JS, Aroian RV (2000) Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics 155: 1693–1699.
[24]
United States Pharmacopeia: United States Pharmacopeia Convertion, Inc.
[25]
Fuchs RL, Ream JE, Hammond BG, Naylor MW, Leimgruber RM, et al. (1993) Safety assessment of the neomycin phosphotransferase II (NPTII) protein. Biotechnology (N Y) 11: 1543–1547. doi: 10.1038/nbt1293-1543
[26]
Stephen C, Pearce M, Bender C (2001) Human health effects of aerial spraying of Bacillus thuringiensis kurstaki-based biological pesticides–A review of observational data and overview of surveillance conducted in Victoria, British Colubia, Canada 1999. Environ Health Rev Fall 73–81.
[27]
Robacker DC, Garcia JA, Martinez AJ (2000) Lack of toxicity to adults of the Mexican fruit fly (Diptera: Tephritidae) of beta-exotoxin in Bacillus thuringiensis endotoxin preparations. J Econ Entomol 93: 1076–1079. doi: 10.1603/0022-0493-93.4.1076
[28]
Githiori JB, Hoglund J, Waller PJ, Baker RL (2003) The anthelmintic efficacy of the plant, Albizia anthelmintica, against the nematode parasites Haemonchus contortus of sheep and Heligmosomoides polygyrus of mice. Vet Parasitol 116: 23–34. doi: 10.1016/S0304-4017(03)00218-8
[29]
Fonseca-Salamanca F, Martinez-Grueiro MM, Martinez-Fernandez AR (2003) Nematocidal activity of nitazoxanide in laboratory models. Parasitol Res 91: 321–324. doi: 10.1007/s00436-003-0974-7
[30]
Wahid FN, Behnke JM, Conway DJ (1989) Factors affecting the efficacy of ivermectin against Heligmosomoides polygyrus (Nematospiroides dubius) in mice. Vet Parasitol 32: 325–340. doi: 10.1016/0304-4017(89)90043-5
[31]
Wabo Pone J, Mbida M, Bilong Bilong CF (2009) In vivo evaluation of potential nematicidal properties of ethanol extract of Canthium mannii (Rubiaceae) on Heligmosomoides polygyrus parasite of rodents. Vet Parasitol 166: 103–107. doi: 10.1016/j.vetpar.2009.07.048
[32]
Sayles PC, Jacobson RH (1983) Effects of various anthelmintics on larval stages of Nematospiroides dubius (Nematoda). J Parasitol 69: 1079–1083. doi: 10.2307/3280868
[33]
Herman RA, Schafer BW, Korjagin VA, Ernest AD (2003) Rapid digestion of Cry34Ab1 and Cry35Ab1 in simulated gastric fluid. J Agric Food Chem 51: 6823–6827. doi: 10.1021/jf034290p
[34]
Parker MW, Feil SC (2005) Pore-forming protein toxins: from structure to function. Prog Biophys Mol Biol 88: 91–142. doi: 10.1016/j.pbiomolbio.2004.01.009
[35]
Anderluh G, Lakey JH (2008) Disparate proteins use similar architectures to damage membranes. Trends Biochem Sci 33: 482–490. doi: 10.1016/j.tibs.2008.07.004
[36]
Alouf JE (2003) Molecular features of the cytolytic pore-forming bacterial protein toxins. Folia Microbiol (Praha) 48: 5–16. doi: 10.1007/BF02931271
[37]
Li XQ, Tan A, Voegtline M, Bekele S, Chen CS, et al. (2008) Expression of Cry5B protein from Bacillus thuringiensis in plant roots confers resistance to root-knot nematode. Biological Control 47: 97–102. doi: 10.1016/j.biocontrol.2008.06.007
[38]
Githiori JB, Hoglund J, Waller PJ, Leyden Baker R (2003) Evaluation of anthelmintic properties of extracts from some plants used as livestock dewormers by pastoralist and smallholder farmers in Kenya against Heligmosomoides polygyrus infections in mice. Vet Parasitol 118: 215–226. doi: 10.1016/j.vetpar.2003.10.006
[39]
Bogh HO, Andreassen J, Lemmich J (1996) Anthelmintic usage of extracts of Embelia schimperi from Tanzania. J Ethnopharmacol 50: 35–42. doi: 10.1016/0378-8741(95)01322-9
[40]
Ayers S, Zink DL, Mohn K, Powell JS, Brown CM, et al. (2007) Anthelmintic macrolactams from Nonomuraea turkmeniaca MA7364. J Nat Prod 70: 1371–1373. doi: 10.1021/np070131e
[41]
Nwosu CO, Eneme TA, Onyeyili PA, Ogugbuaja VO (2008) Toxicity and anthelmintic efficacy of crude aqueous of extract of the bark of Sacoglottis gabonensis. Fitoterapia 79: 101–105. doi: 10.1016/j.fitote.2007.07.010
[42]
Satrija F, Nansen P, Murtini S, He S (1995) Anthelmintic activity of papaya latex against patent Heligmosomoides polygyrus infections in mice. J Ethnopharmacol 48: 161–164. doi: 10.1016/0378-8741(95)01298-R
[43]
Stepek G, Lowe AE, Buttle DJ, Duce IR, Behnke JM (2007) The anthelmintic efficacy of plant-derived cysteine proteinases against the rodent gastrointestinal nematode, Heligmosomoides polygyrus, in vivo. Parasitology 134: 1409–1419. doi: 10.1017/S0031182007002867
[44]
High SM, Cohen MB, Shu QY, Altosaar I (2004) Achieving successful deployment of Bt rice. Trends Plant Sci 9: 286–292. doi: 10.1016/j.tplants.2004.04.002
[45]
Griffitts JS, Haslam SM, Yang T, Garczynski SF, Mulloy B, et al. (2005) Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307: 922–925. doi: 10.1126/science.1104444