Background It is unclear whether dengue serotypes differ in their propensity to cause severe disease. We analyzed differences in serotype-specific disease severity in children presenting for medical attention in Bangkok, Thailand. Methodology/Principal Findings Prospective studies were conducted from 1994 to 2006. Univariate and multivariate logistic and multinomial logistic regressions were used to determine if dengue hemorrhagic fever (DHF) and signs of severe clinical disease (pleural effusion, ascites, thrombocytopenia, hemoconcentration) were associated with serotype. Crude and adjusted odds ratios were calculated. There were 162 (36%) cases with DENV-1, 102 (23%) with DENV-2, 123 (27%) with DENV-3, and 64 (14%) with DENV-4. There was no significant difference in the rates of DHF by serotype: DENV-2 (43%), DENV-3 (39%), DENV-1 (34%), DENV-4 (31%). DENV-2 was significantly associated with increased odds of DHF grade I compared to DF (OR 2.9 95% CI 1.1, 8.0), when using DENV-1 as the reference. Though not statistically significant, DENV-2 had an increased odds of total DHF and DHF grades II, III, and IV. Secondary serologic response was significantly associated with DHF (OR 6.2) and increased when considering more severe grades of DHF. DENV-2 (9%) and -4 (3%) were significantly less often associated with primary disease than DENV-1 (28%) and -3 (33%). Restricting analysis to secondary cases, we found DENV-2 and DENV-3 to be twice as likely to result in DHF as DEN-4 (p = 0.05). Comparing study years, we found the rate of DHF to be significantly less in 1999, 2000, 2004, and 2005 than in 1994, the study year with the highest percentage of DHF cases, even when controlling for other variables. Conclusions/Significance As in other studies, we find secondary disease to be strongly associated with DHF and with more severe grades of DHF. DENV-2 appears to be marginally associated with more severe dengue disease as evidenced by a significant association with DHF grade I when compared to DENV-1. In addition, we found non-significant trends with other grades of DHF. Restricting the analysis to secondary disease we found DENV-2 and -3 to be twice as likely to result in DHF as DEN-4. Differences in severity by study year may suggest that other factors besides serotype play a role in disease severity.
References
[1]
Ng CF, Lum LC, Ismail NA, Tan LH, Tan CP (2007) Clinicians' diagnostic practice of dengue infections. J Clin Virol 40(3): 202–206. doi: 10.1016/j.jcv.2007.08.017
[2]
World Health Organization (1997) Dengue haemorrhagic fever: Diagnosis, treatment, prevention, and control. Geneva: WHO.
[3]
Gubler DJ (1999) Dengue viruses (flaviviridae). In: Granoff Allan, Webster RobertG., editors. Encyclopedia of Virology. Oxford: Elsevier. pp. 375–384.
[4]
Gubler DJ (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11(3): 480–496.
[5]
Chen RF, Yang KD, Wang L, Liu JW, Chiu CC, et al. (2007) Different clinical and laboratory manifestations between dengue haemorrhagic fever and dengue fever with bleeding tendency. Trans R Soc Trop Med Hyg 101(11): 1106–1113. doi: 10.1016/j.trstmh.2007.06.019
[6]
White NJ (1999) Variation in virulence of dengue virus. Lancet 354(9188): 1401–1402. doi: 10.1016/S0140-6736(99)00236-6
[7]
Stephens HA, Klaythong R, Sirikong M, Vaughn DW, Green S, et al. (2002) HLA-A and -B allele associations with secondary dengue virus infections correlate with disease severity and the infecting viral serotype in ethnic Thais. Tissue Antigens 60(4): 309–318. doi: 10.1034/j.1399-0039.2002.600405.x
[8]
Acioli-Santos B, Segat L, Dhalia R, Brito CAA, Braga-Neto UM, et al. (2008) MBL2 gene polymorphisms protect against development of thrombocytopenia associated with severe dengue phenotype. Human Immunology 69(2): 122–128. doi: 10.1016/j.humimm.2008.01.005
[9]
Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, et al. (2000) Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181(1): 2–9. doi: 10.1086/315215
[10]
Thein S, Aung MM, Shwe TN, Aye M, Zaw A, et al. (1997) Risk factors in dengue shock syndrome. Am J Trop Med Hyg 56(5): 566–572.
[11]
Burke DS, Nisalak A, Johnson DE, Scott RM (1988) A prospective study of dengue infections in Bangkok. Am J Trop Med Hyg 38(1): 172–180.
[12]
Graham RR, Juffrie M, Tan R, Hayes CG, Laksono I, et al. (1999) A prospective seroepidemiologic study on dengue in children four to nine years of age in Yogyakarta, Indonesia I. studies in 1995–1996. Am J Trop Med Hyg 61(3): 412–419.
[13]
Endy TP, Chunsuttiwat S, Nisalak A, Libraty DH, Green S, et al. (2002) Epidemiology of inapparent and symptomatic acute dengue virus infection: A prospective study of primary school children in Kamphaeng Phet, Thailand. Am J Epidemiol 156(1): 40–51. doi: 10.1093/aje/kwf005
[14]
Guzman MG, Kouri G, Valdes L, Bravo J, Alvarez M, et al. (2000) Epidemiologic studies on dengue in Santiago de Cuba, 1997. Am J Epidemiol 152(9): 793–9; discussion 804. doi: 10.1093/aje/152.9.793
[15]
Sierra B, Alegre R, Perez AB, Garcia G, Sturn-Ramirez K, et al. (2007) HLA-A, -B, -C, and -DRB1 allele frequencies in Cuban individuals with antecedents of dengue 2 disease: Advantages of the Cuban population for HLA studies of dengue virus infection. Hum Immunol 68(6): 531–540. doi: 10.1016/j.humimm.2007.03.001
[16]
Guzman MG (2005) Global voices of science. deciphering dengue: The Cuban experience. Science 309(5740): 1495–1497. doi: 10.1126/science.1115177
[17]
Halstead SB, Streit TG, Lafontant JG, Putvatana R, Russell K, et al. (2001) Haiti: Absence of dengue hemorrhagic fever despite hyperendemic dengue virus transmission. Am J Trop Med Hyg 65(3): 180–183.
Guzman MG, Kouri G (2003) Dengue and dengue hemorrhagic fever in the Americas: Lessons and challenges. J Clin Virol 27(1): 1–13. doi: 10.1016/S1386-6532(03)00010-6
[20]
Rico-Hesse R (2003) Microevolution and virulence of dengue viruses. Adv Virus Res 59: 315–341. doi: 10.1016/s0065-3527(03)59009-1
[21]
Nisalak A, Endy TP, Nimmannitya S, Kalayanarooj S, Thisayakorn U, et al. (2003) Serotype-specific dengue virus circulation and dengue disease in Bangkok, Thailand from 1973 to 1999. Am J Trop Med Hyg 68(2): 191–202.
[22]
Russell PK, Yuill TM, Nisalak A, Udomsakdi S, Gould DJ, et al. (1968) An insular outbreak of dengue hemorrhagic fever. II. virologic and serologic studies. Am J Trop Med Hyg 17(4): 600–608.
[23]
Sangkawibha N, Rojanasuphot S, Ahandrik S, Viriyapongse S, Jatanasen S, et al. (1984) Risk factors in dengue shock syndrome: A prospective epidemiologic study in Rayong, Thailand. I. the 1980 outbreak. Am J Epidemiol 120(5): 653–669.
[24]
Halstead SB (1980) Immunological parameters of togavirus disease syndromes. In: Schlesinger RW, editor. The togaviruses: biology, structure, replication. New York: Academic Press. pp. 107–73.
[25]
Kochel TJ, Watts DM, Gozalo AS, Ewing DF, Porter KR, et al. (2005) Cross-serotype neutralization of dengue virus in aotus nancymae monkeys. J Infect Dis 191(6): 1000–1004. doi: 10.1086/427511
[26]
Kochel TJ, Watts DM, Halstead SB, Hayes CG, Espinoza A, et al. (2002) Effect of dengue-1 antibodies on American dengue-2 viral infection and dengue haemorrhagic fever. Lancet 360(9329): 310–312. doi: 10.1016/S0140-6736(02)09522-3
[27]
Kalayanarooj S, Vaughn DW, Nimmannitya S, Green S, Suntayakorn S, et al. (1997) Early clinical and laboratory indicators of acute dengue illness. J Infect Dis 176(2): 313–321. doi: 10.1086/514047
[28]
Srikiatkhachorn A, Krautrachue A, Ratanaprakarn W, Wongtapradit L, Nithipanya N, et al. (2007) Natural history of plasma leakage in dengue hemorrhagic fever: A serial ultrasonographic study. Pediatr Infect Dis J 26(4): 283–90; discussion 291–2. doi: 10.1097/01.inf.0000258612.26743.10
[29]
Innis BL, Nisalak A, Nimmannitya S, Kusalerdchariya S, Chongswasdi V, et al. (1989) An enzyme-linked immunosorbent assay to characterize dengue infections where dengue and japanese encephalitis co-circulate. Am J Trop Med Hyg 40(4): 418–427.
[30]
Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV (1992) Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol 30(3): 545–551.
[31]
Stata Corporation (2007) Stata statistical software: Release 10.
[32]
Kalayanarooj S, Gibbons RV, Vaughn D, Green S, Nisalak A, et al. (2007) Blood group AB is associated with increased risk for severe dengue disease in secondary infections. J Infect Dis 195(7): 1014–1017. doi: 10.1086/512244
[33]
Balmaseda A, Hammond SN, Perez L, Tellez Y, Saborio SI, et al. (2006) Serotype-specific differences in clinical manifestations of dengue. Am J Trop Med Hyg 74(3): 449–456.
[34]
Anantapreecha S, Chanama S, A-nuegoonpipat A, Naemkhunthot S, Sa-Ngasang A, et al. (2005) Serological and virological features of dengue fever and dengue haemorrhagic fever in Thailand from 1999 to 2002. Epidemiol Infect 133(3): 503–507. doi: 10.1017/S0950268804003541
[35]
Klungthong C, Zhang C, Mammen MP Jr, Ubol S, Holmes EC (2004) The molecular epidemiology of dengue virus serotype 4 in Bangkok, Thailand. Virology 329(1): 168–179. doi: 10.1016/j.virol.2004.08.003