全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Modeling Disease Vector Occurrence when Detection Is Imperfect: Infestation of Amazonian Palm Trees by Triatomine Bugs at Three Spatial Scales

DOI: 10.1371/journal.pntd.0000620

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Failure to detect a disease agent or vector where it actually occurs constitutes a serious drawback in epidemiology. In the pervasive situation where no sampling technique is perfect, the explicit analytical treatment of detection failure becomes a key step in the estimation of epidemiological parameters. We illustrate this approach with a study of Attalea palm tree infestation by Rhodnius spp. (Triatominae), the most important vectors of Chagas disease (CD) in northern South America. Methodology/Principal Findings The probability of detecting triatomines in infested palms is estimated by repeatedly sampling each palm. This knowledge is used to derive an unbiased estimate of the biologically relevant probability of palm infestation. We combine maximum-likelihood analysis and information-theoretic model selection to test the relationships between environmental covariates and infestation of 298 Amazonian palm trees over three spatial scales: region within Amazonia, landscape, and individual palm. Palm infestation estimates are high (40–60%) across regions, and well above the observed infestation rate (24%). Detection probability is higher (~0.55 on average) in the richest-soil region than elsewhere (~0.08). Infestation estimates are similar in forest and rural areas, but lower in urban landscapes. Finally, individual palm covariates (accumulated organic matter and stem height) explain most of infestation rate variation. Conclusions/Significance Individual palm attributes appear as key drivers of infestation, suggesting that CD surveillance must incorporate local-scale knowledge and that peridomestic palm tree management might help lower transmission risk. Vector populations are probably denser in rich-soil sub-regions, where CD prevalence tends to be higher; this suggests a target for research on broad-scale risk mapping. Landscape-scale effects indicate that palm triatomine populations can endure deforestation in rural areas, but become rarer in heavily disturbed urban settings. Our methodological approach has wide application in infectious disease research; by improving eco-epidemiological parameter estimation, it can also significantly strengthen vector surveillance-control strategies.

References

[1]  Chagas C (1909) Nova Tripanozomiaze humana. Estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolójico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz 1(2): 159–218.
[2]  Coura JR (2007) Chagas disease: what is known and what is needed – A background article. Mem Inst Oswaldo Cruz 102: Suppl.1113–122. doi: 10.1590/s0074-02762007000900018
[3]  Hotez PJ, Bottazzi ME, Franco-Paredes C, Ault SK, Periago MR (2008) The Neglected Tropical Diseases of Latin America and the Caribbean: A review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl Trop Dis 2(9): e300. doi: 10.1371/journal.pntd.0000300
[4]  World Bank (1993) World Development Report 1993: Investing in Health. New York: Oxford University Press.
[5]  Morel CM, Lazdins J (2003) Chagas disease. Nature Rev Microbiol 1(1): 14–15. doi: 10.1038/nrmicro735
[6]  Mathers CD, Lopez AD, Murray CJL (2006) The burden of disease and mortality by condition: data, methods and results for 2001. In: Lopez AD, Mathers CD, Ezzati M, Murray CJL, Jamison DT, editors. Global Burden of Disease and Risk Factors. New York: Oxford University Press. pp. 45–240.
[7]  WHO (2004) The World Health Report 2004: Changing History. Geneva: World Health Organization.
[8]  Schofield CJ, Kabayo JP (2008) Trypanosomiasis vector control in Africa and Latin America. Parasit Vectors 1: 24. doi: 10.1186/1756-3305-1-24
[9]  WHO (2002) Control of Chagas Disease: Second Report of the WHO Expert Committee. WHO Tech Rep Ser 905: i–vi.1, 109
[10]  Miles MA, Feliciangeli MD, de Arias AR (2003) Science, medicine, and the future: American trypanosomiasis (Chagas' disease) and the role of molecular epidemiology in guiding control strategies. BMJ 326(7404): 1444–1448. doi: 10.1136/bmj.326.7404.1444
[11]  Fitzpatrick S, Feliciangeli MD, Sánchez-Martín M, Monteiro FA, Miles MA (2008) Molecular genetics reveal that silvatic Rhodnius prolixus do colonise rural houses. PLoS Negl Trop Dis 2(4): e210. doi: 10.1371/journal.pntd.0000210
[12]  Sánchez-Martín M, Feliciangeli MD, Campbell-Lendrum D, Davies CR (2006) Could the Chagas disease elimination programme in Venezuela be compromised by reinvasion of houses by sylvatic Rhodnius prolixus bug populations? Trop Med Int Health 11(10): 1585–1593. doi: 10.1111/j.1365-3156.2006.01717.x
[13]  Cecere MC, Vázquez-Prokopec GM, Gürtler RE, Kitron U (2006) Reinfestation sources for Chagas disease vector, Triatoma infestans, Argentina. Emerg Infect Dis 12(7): 1096–1102. doi: 10.3201/eid1207.051445
[14]  Abad-Franch F, Monteiro FA (2007) Biogeography and evolution of Amazonian triatomines (Heteroptera: Reduviidae): implications for Chagas disease surveillance in humid forest ecoregions. Mem Inst Oswaldo Cruz 102: Suppl.157–69. doi: 10.1590/S0074-02762007005000108
[15]  Coura JR, Junqueira ACV, Fernandes O, Valente SAS, Miles MA (2002) Emerging Chagas disease in Amazonian Brazil. Trends Parasitol 18(4): 171–176. doi: 10.1016/S1471-4922(01)02200-0
[16]  Aguilar HM, Abad-Franch F, Dias JCP, Junqueira ACV, Coura JR (2007) Chagas disease in the Amazon region. Mem Inst Oswaldo Cruz 102: Suppl.147–55. doi: 10.1590/S0074-02762007005000098
[17]  Grijalva MJ, Escalante L, Paredes RA, Costales JA, Padilla A, et al. (2003) Seroprevalence and risk factors for Trypanosoma cruzi infection in the Amazon region of Ecuador. Am J Trop Med Hyg 69(4): 380–385.
[18]  Lent H, Wygodzinsky P (1979) Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas' disease. Bull Am Mus Nat Hist 163: 123–520.
[19]  Barrett TV, Harris KH, org (1991) Advances in triatomine bug ecology in relation to Chagas' disease. Advances in Disease Vector Research, vol. 8. New York: Springer-Verlag. pp. 143–176.
[20]  Abad-Franch F, Monteiro FA, Jaramillo ON, Dias FBS, Gurgel-Gon?alves R, et al. (2009) Ecology, evolution, and the long-term surveillance of vector-borne Chagas disease: A multi-scale appraisal of the tribe Rhodniini (Triatominae). Acta Trop 110(2–3): 159–177. doi: 10.1016/j.actatropica.2008.06.005
[21]  Abad-Franch F, Palomeque FS, Aguilar HM, Miles MA (2005) Field ecology of sylvatic Rhodnius populations (Heteroptera, Triatominae): Risk factors for palm tree infestation in western Ecuador. Trop Med Int Health 10(12): 1258–1266. doi: 10.1111/j.1365-3156.2005.01511.x
[22]  Miles MA, Arias JR, De Souza AA (1983) Chagas' disease in the Amazon basin: V. Periurban palms as habitats of Rhodnius robustus and Rhodnius pictipes – triatomine vectors of Chagas' disease. Mem Inst Oswaldo Cruz 78(4): 391–398. doi: 10.1590/S0074-02761983000400002
[23]  Roma?a CA, Pizarro JCN, Rodas E, Guilbert E (1999) Palm trees as ecological indicators of risk areas for Chagas disease. Trans R Soc Trop Med Hyg 93(6): 594–595. doi: 10.1016/S0035-9203(99)90059-7
[24]  MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, et al. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8): 2248–2255. doi: 10.1890/0012-9658(2002)083[2248:esorwd]2.0.co;2
[25]  MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, et al. (2006) Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. San Diego: Elsevier Academic Press.
[26]  Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, et al. (2001) Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 51(11): 933–938. doi: 10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2
[27]  Malhi Y, Baker TR, Phillips OL, Almeida S, Alvarez E, et al. (2004) The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biol 10(5): 563–591. doi: 10.1111/j.1529-8817.2003.00778.x
[28]  ter Steege H, Pitman NCA, Phillips OL, Chave J, Sabatier D, et al. (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443(7110): 444–447. doi: 10.1038/nature05134
[29]  Henderson A, Galeano G, Bernal R (1995) Field Guide to the Palms of the Americas. Princeton: Princeton University Press.
[30]  Abad-Franch F, Noireau F, Paucar A, Aguilar HM, Carpio C, et al. (2000) The use of live-bait traps for the study of sylvatic Rhodnius populations (Hemiptera : Reduviidae) in palm trees. Trans R Soc Trop Med Hyg 94(6): 629–630. doi: 10.1016/S0035-9203(00)90213-X
[31]  Noireau F, Abad-Franch F, Valente SAS, Dias-Lima A, Lopes CM, et al. (2002) Trapping Triatominae in silvatic habitats. Mem Inst Oswaldo Cruz 97(1): 61–63. doi: 10.1590/S0074-02762002000100009
[32]  Gurgel-Gon?alves R, Palma ART, Menezes MNA, Leite RN, Cuba CAC (2003) Sampling Rhodnius neglectus in Mauritia flexuosa palm trees: a field study in the Brazilian savanna. Med Vet Entomol 17(3): 347–349. doi: 10.1046/j.1365-2915.2003.00448.x
[33]  Royle JA, Dorazio RM (2008) Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities. London: Academic Press.
[34]  Williams BK, Nichols JD, Conroy MJ (2002) Analysis and Management of Animal Populations. San Diego: Elsevier Academic Press.
[35]  Hines JE (2004) PRESENCE 2.0. US Geological Survey – Patuxent Wildlife Research Center. Available: www.mbr-pwrc.usgs.gov/software/presence.?html.
[36]  Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. New York: Springer.
[37]  Secretaria de Vigilancia em Saúde – Ministério da Saúde do Brasil (2005) Consenso Brasileiro em Doen?a de Chagas. Rev Soc Bras Med Trop 38: Suppl.III1–29. doi: 10.1590/s0037-86821988000100006
[38]  Prata A (2001) Clinical and epidemiological aspects of Chagas disease. Lancet Infect Dis 1(2): 92–100. doi: 10.1016/S1473-3099(01)00065-2
[39]  Gürtler RE, Vázquez-Prokopec GM, Ceballos LA, Petersen CL, Salomón OD (2001) Comparison between two artificial shelter units and timed manual collections for detecting peridomestic Triatoma infestans (Hemiptera: Reduviidae) in rural northwestern Argentina. J Med Entomol 38(3): 429–436. doi: 10.1603/0022-2585-38.3.429
[40]  zu Dohna H, Cecere MC, Gürtler RE, Kitron U, Cohen JE (2009) Spatial re-establishment dynamics of local populations of vectors of Chagas disease. PLoS Negl Trop Dis 3(7): e490. doi: 10.1371/journal.pntd.0000490
[41]  Royle JA, Nichols JD (2003) Estimating abundance from repeated presence-absence data or point counts. Ecology 84(3): 777–790. doi: 10.1890/0012-9658(2003)084[0777:eafrpa]2.0.co;2
[42]  Abad-Franch F (2006) Transiciones ecológicas y transmissión vectorial de la enfermedad de Chagas en la Amazonia. In: Abad-Franch F, Salvatella R, Bazzani R, editors. Memorias de la 2a Reunión de la Iniciativa Intergubernamental de Vigilancia y Prevención de la Enfermedad de Chagas en la Amazonia. Montevideo: IDRC-OPS-Fiocruz. Available: www.idrc.ca/es/ev-106357-201-1-DO_TOPIC.?html.
[43]  Lehane MJ, McEwen PK, Whitaker CJ, Schofield CJ (1992) The role of temperature and nutritional status in flight initiation by Triatoma infestans. Acta Trop 52(1): 27–38. doi: 10.1016/0001-706X(92)90004-H
[44]  Ceballos LA, Vázquez-Prokopec GM, Cecere MC, Marcet PL, Gürtler RE (2005) Feeding rates, nutritional status and flight dispersal potential of peridomestic populations of Triatoma infestans in rural northwestern Argentina. Acta Trop 95(2): 149–159. doi: 10.1016/j.actatropica.2005.05.010
[45]  Forattini OP (1980) Biogeografia, origem e distribui??o da domicilia??o de triatomíneos no Brasil. Rev Saude Publ 14(13): 265–299. doi: 10.1590/s0034-89101980000300002
[46]  Naiff MF, Naiff RD, Barrett TV (1998) Vetores selváticos de doen?a de Chagas na área urbana de Manaus (AM): atividade de v?o nas esta??es secas e chuvosas. Rev Soc Bras Med Trop 31(1): 103–105. doi: 10.1590/S0037-86821998000100014
[47]  Dias FBS, Bezerra CM, Machado EMM, Casanova C, Diotaiuti L (2008) Ecological aspects of Rhodnius nasutus St?l, 1859 (Hemiptera: Reduviidae: Triatominae) in palms of the Chapada do Araripe in Ceará, Brazil. Mem Inst Oswaldo Cruz 103(8): 824–830. doi: 10.1590/S0074-02762008000800014
[48]  MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84(8): 2200–2207. doi: 10.1890/02-3090
[49]  Ostfeld RS, Glass GE, Keesing F (2005) Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol Evol 20(6): 328–336. doi: 10.1016/j.tree.2005.03.009
[50]  Tarleton RL, Reithinger R, Urbina JA, Kitron U, Gürtler RE (2008) The challenges of Chagas disease – Grim outlook or glimmer of hope? PLoS Med 4(12): e332. doi: 10.1371/journal.pmed.0040332
[51]  Pollock KH (1982) A capture-recapture design robust to unequal probability of capture. J Wildl Manage 46(3): 752–757. doi: 10.2307/3808568
[52]  Hilborn R, Mangel M (1997) The Ecological Detective: Confronting Models with Data. Princeton: Princeton University Press.
[53]  Link WA, Cam E, Nichols JD, Cooch EG (2002) Of BUGS and birds: Markov chain Monte Carlo for hierarchical modeling in wildlife research. J Wildl Manage 66(2): 277–291. doi: 10.2307/3803160
[54]  McCutcheon AC (1987) Latent Class Analysis. Beverly Hills: Sage Publications.
[55]  Walter SD, Irwig LM (1988) Estimation of test error rates, disease prevalence and relative risk from misclassified data: A review. J Clin Epidemiol 41(9): 923–937. doi: 10.1016/0895-4356(88)90110-2
[56]  Pepe MS, Janes H (2007) Insights into latent class analysis of diagnostic test performance. Biostatistics 8(2): 474–484. doi: 10.1093/biostatistics/kxl038
[57]  Yip PSF, Bruno G, Tajima N, Seber GAF, Buckland ST, et al. (1995a) Capture-recapture and multiple-record systems estimation I: History and theoretical development. Am J Epidemiol 142(10): 1047–1058.
[58]  Yip PSF, Bruno G, Tajima N, Seber GAF, Buckland ST, et al. (1995b) Capture-recapture and multiple-record systems estimation II: Applications in human diseases. Am J Epidemiol 142(10): 1059–1068.
[59]  Focks DA (2003) A review of entomological sampling methods and indicators for Dengue vectors. UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), TDR/IDE/DEN/03.1.
[60]  Knopp S, Mgeni AF, Khamis IS, Steinmann P, Stothard JR, et al. (2008) Diagnosis of soil-transmitted helminths in the era of preventive chemotherapy: Effect of multiple stool sampling and use of different diagnostic techniques. PLoS Negl Trop Dis 2(11): e331. doi: 10.1371/journal.pntd.0000331
[61]  Taylor LH, Latham SM, Woolhouse MEJ (2001) Risk factors for human disease emergence. Phil Trans R Soc Lond B 356(1411): 983–989. doi: 10.1098/rstb.2001.0888
[62]  MacKenzie DI, Royle JA (2005) Designing occupancy studies: general advice and allocating survey effort. J Appl Ecol 42(6): 1105–1114. doi: 10.1111/j.1365-2664.2005.01098.x
[63]  Burnham KP, Anderson DR (2004) Multimodel inference - understanding AIC and BIC in model selection. Sociol Methods Res 33(4): 261–304. doi: 10.1177/0049124104268644

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133