全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

High Dengue Case Capture Rate in Four Years of a Cohort Study in Nicaragua Compared to National Surveillance Data

DOI: 10.1371/journal.pntd.0000633

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dengue is a major public health problem in tropical and subtropical regions; however, under-reporting of cases to national surveillance systems hinders accurate knowledge of disease burden and costs. Laboratory-confirmed dengue cases identified through the Nicaraguan Pediatric Dengue Cohort Study (PDCS) were compared to those reported from other health facilities in Managua to the National Epidemiologic Surveillance (NES) program of the Nicaraguan Ministry of Health. Compared to reporting among similar pediatric populations in Managua, the PDCS identified 14 to 28 (average 21.3) times more dengue cases each year per 100,000 persons than were reported to the NES. Applying these annual expansion factors to national-level data, we estimate that the incidence of confirmed pediatric dengue throughout Nicaragua ranged from 300 to 1000 cases per 100,000 persons. We have estimated a much higher incidence of dengue than reported by the Ministry of Health. A country-specific expansion factor for dengue that allows for a more accurate estimate of incidence may aid governments and other institutions calculating disease burden, costs, resource needs for prevention and treatment, and the economic benefits of drug and vaccine development.

References

[1]  Gibbons RV, Vaughn DW (2002) Dengue: an escalating problem. BMJ 324: 1563–1566. doi: 10.1136/bmj.324.7353.1563
[2]  Suaya JA, Shepard DS, Beatty ME (2007) Dengue: Burden of disease and costs of illness TropIKAnet, http://www.tropika.net/svc/review/061001?-Dengue_Burden_of_disease#page-comments.
[3]  Balmaseda A, Hammond SN, Perez MA, Cuadra R, Solano S, et al. (2005) Assessment of the World Health Organization scheme for classification of dengue severity in Nicaragua. Am J Trop Med Hyg 73: 1059–1062.
[4]  Kuan G, Gordon A, Avilés W, Ortega O, Hammond SN, et al. (2009) The Nicaraguan Pediatric Dengue Cohort Study: Study design, methods, use of information technology, and extension to other infectious diseases. Am J Epidemiol 170: 120–129. doi: 10.1093/aje/kwp092
[5]  Balmaseda A, Hammond SN, Tellez Y, Imhoff L, Rodriguez Y, et al. (2006) High seroprevalence of antibodies against dengue virus in a prospective study of schoolchildren in Managua, Nicaragua. Trop Med Intl Health 11: 935–942. doi: 10.1111/j.1365-3156.2006.01641.x
[6]  Fernandez R, Vasquez S (1990) Serological diagnosis of dengue by an ELISA Inhibition method. Mem Inst Oswaldo Cruz 85: 347–351. doi: 10.1590/S0074-02761990000300012
[7]  Harris E, Videa E, Perez L, Sandoval E, Tellez Y, et al. (2000) Clinical, epidemiologic, and virologic features of dengue in the 1998 epidemic in Nicaragua. Am J Trop Med Hyg 63: 5–11.
[8]  Balmaseda A, Mercado JC, Matute JC, Tellez Y, Saborío S, et al. (2010) Trends in patterns of dengue transmission in a pediatric cohort study in Nicaragua. J Infect Dis 201: 5–14. doi: 10.1086/648592
[9]  Halstead SB (1997) Epidemiology of dengue and dengue hemorrhagic fever. New York: CAB International. In D. J. Gubler and G. Kuno (ed.), Dengue and Dengue Hemorrhagic Fever.
[10]  Meltzer MI, Rigau-Perez JG, Clark GG, Reiter P, Gubler DJ (1998) Using disability-adjusted life years to assess the economic impact of dengue in Puerto Rico: 1984-1994. Am J Trop Med Hyg 59: 265–271.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133