全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Specific Humoral Immunity versus Polyclonal B Cell Activation in Trypanosoma cruzi Infection of Susceptible and Resistant Mice

DOI: 10.1371/journal.pntd.0000733

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The etiologic agent of Chagas Disease is Trypanosoma cruzi. Acute infection results in patent parasitemia and polyclonal lymphocyte activation. Polyclonal B cell activation associated with hypergammaglobulinemia and delayed specific humoral immunity has been reported during T. cruzi infection in experimental mouse models. Based on preliminary data from our laboratory we hypothesized that variances in susceptibility to T. cruzi infections in murine strains is related to differences in the ability to mount parasite-specific humoral responses rather than polyclonal B cell activation during acute infection. Methodology/Principal Findings Relatively susceptible Balb/c and resistant C57Bl/6 mice were inoculated with doses of parasite that led to similar timing and magnitude of initial parasitemia. Longitudinal analysis of parasite-specific and total circulating antibody levels during acute infection demonstrated that C57Bl/6 mice developed parasite-specific antibody responses by 2 weeks post-infection with little evidence of polyclonal B cell activation. The humoral response in C57Bl/6 mice was associated with differential activation of B cells and expansion of splenic CD21highCD23low Marginal Zone (MZ) like B cells that coincided with parasite-specific antibody secreting cell (ASC) development in the spleen. In contrast, susceptible Balb/c mice demonstrated early activation of B cells and early expansion of MZ B cells that preceded high levels of ASC without apparent parasite-specific ASC formation. Cytokine analysis demonstrated that the specific humoral response in the resistant C57Bl/6 mice was associated with early T-cell helper type 1 (Th1) cytokine response, whereas polyclonal B cell activation in the susceptible Balb/c mice was associated with sustained Th2 responses and delayed Th1 cytokine production. The effect of Th cell bias was further demonstrated by differential total and parasite-specific antibody isotype responses in susceptible versus resistant mice. T cell activation and expansion were associated with parasite-specific humoral responses in the resistant C57Bl/6 mice. Conclusions/Significance The results of this study indicate that resistant C57Bl/6 mice had improved parasite-specific humoral responses that were associated with decreased polyclonal B cell activation. In general, Th2 cytokine responses are associated with improved antibody response. But in the context of parasite infection, this study shows that Th2 cytokine responses were associated with amplified polyclonal B cell activation and diminished specific humoral

References

[1]  Tarleton RL (2001) Parasite persistence in the aetiology of Chagas disease. Int J Parasitol 31: 550–554. doi: 10.1016/S0020-7519(01)00158-8
[2]  Zhang L, Tarleton RL (1996) Characterization of cytokine production in murine Trypanosoma cruzi infection by in situ immunocytochemistry: Lack of association between susceptibility and type 2 cytokine production. European Journal of Immunology 26: 102–109. doi: 10.1002/eji.1830260116
[3]  Kierszenbaum F, Gottlieb CA, Budzko DB (1983) Exacerbation of Trypanosoma cruzi infection in mice treated with the immunoregulatory agent cyclosporin A. Tropenmed Parasitol 34: 4–6.
[4]  Budzko DB, Pizzimenti MC, Kierszenbaum F (1975) Effects of complement depletion in experimental chagas disease: immune lysis of virulent blood forms of Trypanosoma cruzi. Infect Immun 11: 86–91.
[5]  Silva J, Morrissey P, Grabstein K, Mohler K, Anderson D, et al. (1992) Interleukin 10 and interferon gamma regulation of experimental Trypanosoma cruzi infection. J Exp Med 175: 169–174. doi: 10.1084/jem.175.1.169
[6]  Tarleton RL (1990) Depletion of CD8+ T cells increases susceptibility and reverses vaccine-induced immunity in mice infected with Trypanosoma cruzi. J Immunol 144: 717–724.
[7]  Kumar S, Tarleton RL (1998) The relative contribution of antibody production and CD8+ T cell function to immune control of Trypanosoma cruzi. Parasite Immunol 20: 207–216. doi: 10.1046/j.1365-3024.1998.00154.x
[8]  Rottenberg ME, Rodriguez DA, Orn A (1992) Control of Trypanosoma cruzi infection in mice deprived of T-cell help. Scand J Immunol 36: 261–268. doi: 10.1111/j.1365-3083.1992.tb03098.x
[9]  Sardinha LR, Elias RM, Mosca T, Bastos KR, Marinho CR, et al. (2006) Contribution of NK, NK T, gamma delta T, and alpha beta T cells to the gamma interferon response required for liver protection against Trypanosoma cruzi. Infect Immun 74: 2031–2042. doi: 10.1128/IAI.74.4.2031-2042.2006
[10]  Brodskyn CI, Silva AM, Takehara HA, Mota I (1989) IgG subclasses responsible for immune clearance in mice infected with Trypanosoma cruzi. Immunol Cell Biol 67(Pt 6): 343–348. doi: 10.1038/icb.1989.50
[11]  Scott MT (1981) The nature of immunity against Trypanosoma cruzi in mice recovered from acute infection. Parasite Immunology 3: 209–218. doi: 10.1111/j.1365-3024.1981.tb00400.x
[12]  Minoprio P, Burlen O, Pereira P, Guilbert B, Andrade L, et al. (1988) Most B cells in acute Trypanosoma cruzi infection lack parasite specificity. Scand J Immunol 28: 553–561. doi: 10.1111/j.1365-3083.1988.tb01487.x
[13]  Minoprio P (2002) Impact of polyclonal lymphocyte responses on parasite evasion and persistence. In: Kelly JM, editor. Molecular mechanisms of Chagas disease pathogenesis. Eureka.
[14]  Reina-San-Martin B, Cosson A, Minoprio P (2000) Lymphocyte polyclonal activation: a pitfall for vaccine design against infectious agents. Parasitol Today 16: 62–67. doi: 10.1016/S0169-4758(99)01591-4
[15]  Cunningham DS, Kuhn RE, Rowland EC (1978) Suppression of humoral responses during Trypanosoma cruzi infections in mice. Infect Immun 22: 155–160.
[16]  Teixeira AR, Teixeira G, Macedo V, Prata A (1978) Acquired cell-mediated immunodepression in acute Chagas' disease. J Clin Invest 62: 1132–1141. doi: 10.1172/JCI109232
[17]  Brener Z (1980) Immunity to Trypanosoma cruzi. Adv Parasitol 18: 247–292. doi: 10.1016/s0065-308x(08)60401-7
[18]  Rowland EC, Mikhail KS, McCormick TS (1992) Isotype determination of anti-Trypanosoma cruzi antibody in murine Chagas' disease. J Parasitol 78: 557–561. doi: 10.2307/3283671
[19]  el Bouhdidi A, Truyens C, Rivera MT, Bazin H, Carlier Y (1994) Trypanosoma cruzi infection in mice induces a polyisotypic hypergammaglobulinaemia and parasite-specific response involving high IgG2a concentrations and highly avid IgG1 antibodies. Parasite Immunol 16: 69–76. doi: 10.1111/j.1365-3024.1994.tb00325.x
[20]  d'Imperio Lima MR, Eisen H, Minoprio P, Joskowicz M, Coutinho A (1986) Persistence of polyclonal B cell activation with undetectable parasitemia in late stages of experimental Chagas' disease. J Immunol 137: 353–356.
[21]  Minoprio P, Eisen H, Joskowicz M, Pereira P, Coutinho A (1987) Suppression of polyclonal antibody production in Trypanosoma cruzi-infected mice by treatment with anti-L3T4 antibodies. J Immunol 139: 545–550.
[22]  Reina-San-Martin B, Degrave W, Rougeot C, Cosson A, Chamond N, et al. (2000) A B-cell mitogen from a pathogenic trypanosome is a eukaryotic proline racemase. Nat Med 6: 890–897. doi: 10.1038/78651
[23]  Buschiazzo A, Goytia M, Schaeffer F, Degrave W, Shepard W, et al. (2006) Crystal structure, catalytic mechanism, and mitogenic properties of Trypanosoma cruzi proline racemase. Proc Natl Acad Sci U S A 103: 1705–1710. doi: 10.1073/pnas.0509010103
[24]  Montes CL, Zuniga E, Minoprio P, Vottero-Cima E, Gruppi A (1999) A Trypanosoma cruzi alkaline antigen induces polyclonal B-cell activation of normal murine spleen cells by T-cell-independent, BCR-directed stimulation. Scand J Immunol 50: 159–166. doi: 10.1046/j.1365-3083.1999.00577.x
[25]  Montes CL, Zuniga EI, Vazquez J, Arce C, Gruppi A (2002) Trypanosoma cruzi mitochondrial malate dehydrogenase triggers polyclonal B-cell activation. Clin Exp Immunol 127: 27–36. doi: 10.1046/j.1365-2249.2002.01746.x
[26]  Gao W, Wortis HH, Pereira MA (2002) The Trypanosoma cruzi trans-sialidase is a T cell-independent B cell mitogen and an inducer of non-specific Ig secretion. Int Immunol 14: 299–308. doi: 10.1093/intimm/14.3.299
[27]  Da Silva AC, Espinoza AG, Taibi A, Ouaissi A, Minoprio P (1998) A 24,000 MW Trypanosoma cruzi antigen is a B-cell activator. Immunology 94: 189–196. doi: 10.1046/j.1365-2567.1998.00498.x
[28]  Minoprio PM, Eisen H, Forni L, D'Imperio Lima MR, Joskowicz M, et al. (1986) Polyclonal lymphocyte responses to murine Trypanosoma cruzi infection. I. Quantitation of both T- and B-cell responses. Scand J Immunol 24: 661–668. doi: 10.1111/j.1365-3083.1986.tb02185.x
[29]  Minoprio P, Bandeira A, Pereira P, Mota Santos T, Coutinho A (1989) Preferential expansion of Ly-1 B and CD4- CD8- T cells in the polyclonal lymphocyte responses to murine T. cruzi infection. Int Immunol 1: 176–184. doi: 10.1093/intimm/1.2.176
[30]  Zuniga E, Motran CC, Montes CL, Yagita H, Gruppi A (2002) Trypanosoma cruzi infection selectively renders parasite-specific IgG+ B lymphocytes susceptible to Fas/Fas ligand-mediated fratricide. J Immunol 168: 3965–3973.
[31]  Zuniga E, Motran C, Montes CL, Diaz FL, Bocco JL, et al. (2000) Trypanosoma cruzi-induced immunosuppression: B cells undergo spontaneous apoptosis and lipopolysaccharide (LPS) arrests their proliferation during acute infection. Clin Exp Immunol 119: 507–515. doi: 10.1046/j.1365-2249.2000.01150.x
[32]  Zuniga E, Acosta-Rodriguez E, Merino MC, Montes C, Gruppi A (2005) Depletion of immature B cells during Trypanosoma cruzi infection: involvement of myeloid cells and the cyclooxygenase pathway. Eur J Immunol 35: 1849–1858. doi: 10.1002/eji.200526005
[33]  Minoprio P, Coutinho A, Spinella S, Hontebeyrie-Joskowicz M (1991) Xid immunodeficiency imparts increased parasite clearance and resistance to pathology in experimental Chagas' disease. Int Immunol 3: 427–433. doi: 10.1093/intimm/3.5.427
[34]  Minoprio P, el Cheikh MC, Murphy E, Hontebeyrie-Joskowicz M, Coffman R, et al. (1993) Xid-associated resistance to experimental Chagas' disease is IFN-gamma dependent. J Immunol 151: 4200–4208.
[35]  Santos-Lima EC, Vasconcellos R, Reina-San-Martin B, Fesel C, Cordeiro-Da-Silva A, et al. (2001) Significant association between the skewed natural antibody repertoire of Xid mice and resistance to Trypanosoma cruzi infection. Eur J Immunol 31: 634–645. doi: 10.1002/1521-4141(200102)31:2<634::AID-IMMU634>3.0.CO;2-H
[36]  Radwanska M, Guirnalda P, De Trez C, Ryffel B, Black S, et al. (2008) Trypanosomiasis-Induced B Cell Apoptosis Results in Loss of Protective Anti-Parasite Antibody Responses and Abolishment of Vaccine-Induced Memory Responses. PLoS Pathog 4: e1000078. doi: 10.1371/journal.ppat.1000078
[37]  Malkiel S, Kuhlow CJ, Mena P, Benach JL (2009) The Loss and Gain of Marginal Zone and Peritoneal B Cells Is Different in Response to Relapsing Fever and Lyme Disease Borrelia. J Immunol 182: 498–506.
[38]  Oliver AM, Martin F, Gartland GL, Carter RH, Kearney JF (1997) Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur J Immunol 27: 2366–2374. doi: 10.1002/eji.1830270935
[39]  Allman D, Pillai S (2008) Peripheral B cell subsets. Curr Opin Immunol 20: 149–157. doi: 10.1016/j.coi.2008.03.014
[40]  Suarez F, Lortholary O, Hermine O, Lecuit M (2006) Infection-associated lymphomas derived from marginal zone B cells: a model of antigen-driven lymphoproliferation. Blood 107: 3034–3044. doi: 10.1182/blood-2005-09-3679
[41]  Won W-J, Kearney J (2002) CD9 Is a Unique Marker for Marginal Zone B Cells, B1 Cells, and Plasma Cells in Mice. J Immunol 168: 5605–5611.
[42]  Song H, Cerny J (2003) Functional Heterogeneity of Marginal Zone B Cells Revealed by Their Ability to Generate Both Early Antibody-forming Cells and Germinal Centers with Hypermutation and Memory in Response to a T-dependent Antigen. J Exp Med 198: 1923–1935. doi: 10.1084/jem.20031498
[43]  Fairfax KA, Kallies A, Nutt SL, Tarlinton DM (2008) Plasma cell development: from B-cell subsets to long-term survival niches. Semin Immunol 20: 49–58. doi: 10.1016/j.smim.2007.12.002
[44]  Gatto D, Ruedl C, Odermatt B, Bachmann MF (2004) Rapid Response of Marginal Zone B Cells to Viral Particles. J Immunol 173: 4308–4316.
[45]  Suarez F, Lortholary O, Hermine O, Lecuit M (2006) Infection-associated lymphomas derived from marginal zone B cells: a model of antigen-driven lymphoproliferation. Blood 107: 3034–3044. doi: 10.1182/blood-2005-09-3679
[46]  Trischmann TM (1983) Non-antibody-mediated control of parasitemia in acute experimental Chagas' disease. J Immunol 130: 1953–1957.
[47]  Haolla FA, Claser C, de Alencar BCG, Tzelepis F, de Vasconcelos JR, et al. (2009) Strain-specific protective immunity following vaccination against experimental Trypanosoma cruzi infection. Vaccine 27: 5644–5653. doi: 10.1016/j.vaccine.2009.07.013
[48]  Andrade V, Barral-Netto M, Andrade SG (1985) Patterns of resistance of inbred mice to Trypanosoma cruzi are determined by parasite strain. Braz J Med Biol Res 18: 499–506.
[49]  Hoft DF, Lynch RG, Kirchhoff LV (1993) Kinetic analysis of antigen-specific immune responses in resistant and susceptible mice during infection with Trypanosoma cruzi. J Immunol 151: 7038–7047.
[50]  Hoft DF, Schnapp AR, Eickhoff CS, Roodman ST (2000) Involvement of CD4(+) Th1 cells in systemic immunity protective against primary and secondary challenges with Trypanosoma cruzi. Infect Immun 68: 197–204. doi: 10.1128/IAI.68.1.197-204.2000
[51]  Sepulveda P, Hontebeyrie M, Liegeard P, Mascilli A, Norris KA (2000) DNA-Based immunization with Trypanosoma cruzi complement regulatory protein elicits complement lytic antibodies and confers protection against Trypanosoma cruzi infection. Infect Immun 68: 4986–4991. doi: 10.1128/IAI.68.9.4986-4991.2000
[52]  Norris KA, Schrimpf JE, Szabo MJ (1997) Identification of the gene family encoding the 160-kilodalton Trypanosoma cruzi complement regulatory protein. Infect Immun 65: 349–357.
[53]  Beucher M, Meira WS, Zegarra V, Galvao LM, Chiari E, et al. (2003) Expression and purification of functional, recombinant Trypanosoma cruzi complement regulatory protein. Protein Expr Purif 27: 19–26. doi: 10.1016/S1046-5928(02)00562-4
[54]  Wang S, Zhang C, Zhang L, Li J, Huang Z, et al. (2008) The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods. Vaccine 26: 2100–2110. doi: 10.1016/j.vaccine.2008.02.033
[55]  Yoshida A, Nagata T, Uchijima M, Higashi T, Koide Y (2000) Advantage of gene gun-mediated over intramuscular inoculation of plasmid DNA vaccine in reproducible induction of specific immune responses. Vaccine 18: 1725–1729. doi: 10.1016/S0264-410X(99)00432-6
[56]  Slifka MK, Ahmed R (1996) Limiting dilution analysis of virus-specific memory B cells by an ELISPOT assay. J Immunol Methods 199: 37–46. doi: 10.1016/S0022-1759(96)00146-9
[57]  Slifka MK, Antia R, Whitmire JK, Ahmed R (1998) Humoral immunity due to long-lived plasma cells. Immunity 8: 363–372. doi: 10.1016/S1074-7613(00)80541-5
[58]  Crotty S, Kersh EN, Cannons J, Schwartzberg PL, Ahmed R (2003) SAP is required for generating long-term humoral immunity. Nature 421: 282–287. doi: 10.1038/nature01318
[59]  Meira WS, Galvao LM, Gontijo ED, Machado-Coelho GL, Norris KA, et al. (2002) Trypanosoma cruzi recombinant complement regulatory protein: a novel antigen for use in an enzyme-linked immunosorbent assay for diagnosis of Chagas' disease. J Clin Microbiol 40: 3735–3740. doi: 10.1128/JCM.40.10.3735-3740.2002
[60]  Meira WS, Galvao LM, Gontijo ED, Machado-Coelho GL, Norris KA, et al. (2004) Use of the Trypanosoma cruzi recombinant complement regulatory protein to evaluate therapeutic efficacy following treatment of chronic chagasic patients. J Clin Microbiol 42: 707–712. doi: 10.1128/JCM.42.2.707-712.2004
[61]  Beucher M, Norris KA (2008) Sequence diversity of the Trypanosoma cruzi complement regulatory protein family. Infect Immun 76: 750–758. doi: 10.1128/IAI.01104-07
[62]  Forsthuber TG, Ji N (2007) Quo vadis Th1 and Th2 cells in autoimmunity and infectious diseases: Th17 cells, the new kid on the block. Expert Review of Clinical Immunology 3: 251–254. doi: 10.1586/1744666X.3.3.251
[63]  Martin RM, Brady JL, Lew AM (1998) The need for IgG2c specific antiserum when isotyping antibodies from C57BL/6 and NOD mice. J Immunol Methods 212: 187–192. doi: 10.1016/S0022-1759(98)00015-5
[64]  Kierszenbaum F (1981) On evasion of Trypanosoma cruzi from the host immune response. Lymphoproliferative responses to trypanosomal antigens during acute and chronic experimental Chagas' disease. Immunology 44: 641–648.
[65]  Pillai S, Cariappa A, Moran ST (2005) Marginal zone B cells. Annu Rev Immunol 23: 161–196. doi: 10.1146/annurev.immunol.23.021704.115728
[66]  Lopes-Carvalho T, Kearney JF (2005) Marginal zone B cell physiology and disease. Curr Dir Autoimmun 8: 91–123. doi: 10.1159/000082100
[67]  Achtman AH, Khan M, MacLennan IC, Langhorne J (2003) Plasmodium chabaudi chabaudi infection in mice induces strong B cell responses and striking but temporary changes in splenic cell distribution. J Immunol 171: 317–324.
[68]  Guay HM, Mishra R, Garcea RL, Welsh RM, Szomolanyi-Tsuda E (2009) Generation of Protective T Cell-Independent Antiviral Antibody Responses in SCID Mice Reconstituted with Follicular or Marginal Zone B Cells. J Immunol 183: 518–523. doi: 10.4049/jimmunol.0900068
[69]  Belperron AA, Dailey CM, Bockenstedt LK (2005) Infection-induced marginal zone B cell production of Borrelia hermsii-specific antibody is impaired in the absence of CD1d. J Immunol 174: 5681–5686.
[70]  Cordier-Bussat M, Billaud M, Calender A, Lenoir GM (1993) Epstein-Barr virus (EBV) nuclear-antigen-2-induced up-regulation of CD21 and CD23 molecules is dependent on a permissive cellular context. Int J Cancer 53: 153–160. doi: 10.1002/ijc.2910530128
[71]  Collins CM, Boss JM, Speck SH (2009) Identification of infected B-cell populations by using a recombinant murine gammaherpesvirus 68 expressing a fluorescent protein. J Virol 83: 6484–6493. doi: 10.1128/JVI.00297-09
[72]  Padilla AM, Bustamante JM, Tarleton RL (2009) CD8+ T cells in Trypanosoma cruzi infection. Curr Opin Immunol 21: 385–390. doi: 10.1016/j.coi.2009.07.006
[73]  Hoft DF, Eickhoff CS (2005) Type 1 immunity provides both optimal mucosal and systemic protection against a mucosally invasive, intracellular pathogen. Infect Immun 73: 4934–4940. doi: 10.1128/IAI.73.8.4934-4940.2005
[74]  Tarleton RL (2007) Immune system recognition of Trypanosoma cruzi. Curr Opin Immunol 19: 430–434. doi: 10.1016/j.coi.2007.06.003
[75]  Martin D, Tarleton R (2004) Generation, specificity, and function of CD8+ T cells in Trypanosoma cruzi infection. Immunol Rev 201: 304–317. doi: 10.1111/j.0105-2896.2004.00183.x
[76]  Hontebeyrie-Joskowicz M, Minoprio P (1991) Chagas' disease: Trypanosoma cruzi vs. the host immune system. Res Immunol 142: 125–126. doi: 10.1016/0923-2494(91)90020-J
[77]  Minoprio P, Andrade L, Lembezat MP, Ozaki LS, Coutinho A (1989) Indiscriminate representation of VH-gene families in the murine B lymphocyte responses to Trypanosoma cruzi. J Immunol 142: 4017–4021.
[78]  Antunez MI, Cardoni RL (2000) IL-12 and IFN-gamma production, and NK cell activity, in acute and chronic experimental Trypanosoma cruzi infections. Immunol Lett 71: 103–109. doi: 10.1016/S0165-2478(99)00172-8
[79]  Kumar S, Tarleton RL (2001) Antigen-specific Th1 but not Th2 cells provide protection from lethal Trypanosoma cruzi infection in mice. J Immunol 166: 4596–4603.
[80]  Vogt J, Alba Soto CD, Mincz MP, Mirkin GA (2008) Impaired Trypanosoma cruzi-specific IFN-gamma secretion by T cells bearing the BV9 T-cell receptor is associated with local IL-10 production in non-lymphoid tissues of chronically infected mice. Microbes Infect 10: 781–790. doi: 10.1016/j.micinf.2008.04.013
[81]  Muller U, Kohler G, Mossmann H, Schaub GA, Alber G, et al. (2001) IL-12-independent IFN-gamma production by T cells in experimental Chagas' disease is mediated by IL-18. J Immunol 167: 3346–3353.
[82]  Acosta-Rodriguez EV, Montes CL, Motran CC, Zuniga EI, Liu F-T, et al. (2004) Galectin-3 Mediates IL-4-Induced Survival and Differentiation of B Cells: Functional Cross-Talk and Implications during Trypanosoma cruzi. Infection J Immunol 172: 493–502.
[83]  Hiyama K, Hamano S, Nakamura T, Nomoto K, Tada I (2001) IL-4 reduces resistance of mice to Trypanosoma cruzi infection. Parasitol Res 87: 269–274. doi: 10.1007/PL00008577
[84]  Barbosa de Oliveira LC, Curotto de Lafaille MA, Collet de Araujo Lima GM, de Almeida Abrahamsohn I (1996) Antigen-specific Il-4- and IL-10-secreting CD4+ lymphocytes increase in vivo susceptibility to Trypanosoma cruzi infection. Cell Immunol 170: 41–53. doi: 10.1006/cimm.1996.0132
[85]  Bryan MA, Norris KAGenetic immunization converts the Trypanosoma cruzi B-Cell mitogen proline racemase to an effective immunogen. Infect Immun 78: 810–822. doi: 10.1128/IAI.00926-09
[86]  Acosta-Rodriguez EV, Merino MC, Montes CL, Motran CC, Gruppi A (2007) Cytokines and chemokines shaping the B-cell compartment. Cytokine Growth Factor Rev 18: 73–83. doi: 10.1016/j.cytogfr.2007.01.007
[87]  Takehara HA, Perini A, da Silva MH, Mota I (1981) Trypanosoma cruzi: role of different antibody classes in protection against infection in the mouse. Exp Parasitol 52: 137–146. doi: 10.1016/0014-4894(81)90069-2
[88]  Powell MR, Wassom DL (1993) Host genetics and resistance to acute Trypanosoma cruzi infection in mice. I. Antibody isotype profiles. Parasite Immunol 15: 215–221. doi: 10.1111/j.1365-3024.1993.tb00603.x
[89]  Marinho CR, Bastos KR, Sardinha LR, Grisotto MG, Lima MR, et al. (2004) Challenge of Trypanosoma cruzi chronically infected mice with trypomastigotes activates the immune system and reduces subpatent parasitemia levels. J Parasitol 90: 516–523. doi: 10.1645/GE-212R
[90]  De Arruda Hinds LB, Alexandre-Moreira MS, Decote-Ricardo D, Nunes MP, Pecanha LM (2001) Increased immunoglobulin secretion by B lymphocytes from Trypanosoma cruzi infected mice after B lymphocytes-natural killer cell interaction. Parasite Immunol 23: 581–586. doi: 10.1046/j.1365-3024.2001.00418.x
[91]  van Eijk M, Defrance T, Hennino A, de Groot C (2001) Death-receptor contribution to the germinal-center reaction. Trends Immunol 22: 677–682. doi: 10.1016/S1471-4906(01)02086-5
[92]  Lang ML (2009) How do natural killer T cells help B cells? Expert Rev Vaccines 8: 1109–1121. doi: 10.1586/erv.09.56
[93]  Duthie MS, Kahn SJ (2002) Treatment with alpha-galactosylceramide before Trypanosoma cruzi infection provides protection or induces failure to thrive. J Immunol 168: 5778–5785.
[94]  Duthie MS, Kahn SJ (2006) During acute Trypanosoma cruzi infection highly susceptible mice deficient in natural killer cells are protected by a single alpha-galactosylceramide treatment. Immunology 119: 355–361. doi: 10.1111/j.1365-2567.2006.02439.x
[95]  Leadbetter EA, Brigl M, Illarionov P, Cohen N, Luteran MC, et al. (2008) NK T cells provide lipid antigen-specific cognate help for B cells. Proc Natl Acad Sci U S A 105: 8339–8344. doi: 10.1073/pnas.0801375105
[96]  Abrahamsohn IA, Coffman RL (1996) Trypanosoma cruzi:IL-10, TNF, IFN-[gamma], and IL-12 Regulate Innate and Acquired Immunity to Infection. Experimental Parasitology 84: 231–244. doi: 10.1006/expr.1996.0109
[97]  Antunez MI, Cardoni RL (2001) Early IFN-gamma production is related to the presence of interleukin (IL)-18 and the absence of IL-13 in experimental Trypanosoma cruzi infections. Immunol Lett 79: 189–196. doi: 10.1016/S0165-2478(01)00283-8
[98]  Leite de Moraes MD, Minoprio P, Dy M, Dardenne M, Savino W, et al. (1994) Endogenous IL-10 and IFN-gamma production controls thymic cell proliferation in mice acutely infected by Trypanosoma cruzi. Scand J Immunol 39: 51–58. doi: 10.1111/j.1365-3083.1994.tb03339.x
[99]  Planelles L, Thomas MC, Maranon C, Morell M, Lopez MC (2003) Differential CD86 and CD40 co-stimulatory molecules and cytokine expression pattern induced by Trypanosoma cruzi in APCs from resistant or susceptible mice. Clin Exp Immunol 131: 41–47. doi: 10.1046/j.1365-2249.2003.02022.x
[100]  Starobinas N, Russo M, Minoprio P, Hontebeyrie-Joskowicz M (1991) Is TNF alpha involved in early susceptibility of Trypanosoma cruzi-infected C3H/He mice? Res Immunol 142: 117–122. doi: 10.1016/0923-2494(91)90019-F
[101]  Tarleton RL, Grusby MJ, Zhang L (2000) Increased susceptibility of Stat4-deficient and enhanced resistance in Stat6-deficient mice to infection with Trypanosoma cruzi. J Immunol 165: 1520–1525.
[102]  Montes CL, Acosta-Rodriguez EV, Merino MC, Bermejo DA, Gruppi A (2007) Polyclonal B cell activation in infections: infectious agents' devilry or defense mechanism of the host? J Leukoc Biol 82: 1027–1032. doi: 10.1189/jlb.0407214
[103]  Minoprio P (2001) Parasite polyclonal activators: new targets for vaccination approaches? Int J Parasitol 31: 588–591. doi: 10.1016/S0020-7519(01)00171-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133