Background The options for treating the fatal disease human African trypanosomiasis are limited to a few drugs that are toxic or facing increasing resistance. New drugs that kill the causative agents, subspecies of Trypanosoma brucei, are therefore urgently needed. Little is known about the cellular mechanisms that lead to death of the pathogenic bloodstream stage. Methodology/Principal Findings We therefore conducted the first side by side comparison of the cellular effects of multiple death inducers that target different systems in bloodstream form parasites, including six drugs (pentamidine, prostaglandin D2, quercetin, etoposide, camptothecin, and a tetrahydroquinoline) and six RNAi knockdowns that target distinct cellular functions. All compounds tested were static at low concentrations and killed at high concentrations. Dead parasites were rapidly quantified by forward and side scatter during flow cytometry, as confirmed by ethidium homodimer and esterase staining, making these assays convenient for quantitating parasite death. The various treatments yielded different combinations of defects in mitochondrial potential, reactive oxygen species, cell cycle, and genome segregation. No evidence was seen for phosphatidylserine exposure, a marker of apoptosis. Reduction in ATP levels lagged behind decreases in live cell number. Even when the impact on growth was similar at 24 hours, drug-treated cells showed dramatic differences in their ability to further proliferate, demonstrating differences in the reversibility of effects induced by the diverse compounds. Conclusions/Significance Parasites showed different phenotypes depending on the treatment, but none of them were clear predictors of whether apparently live cells could go on to proliferate after drugs were removed. We therefore suggest that clonal proliferation assays may be a useful step in selecting anti-trypanosomal compounds for further development. Elucidating the genetic or biochemical events initiated by the compounds with the most profound effects on subsequent proliferation may identify new means to activate death pathways.
References
[1]
Kennedy PG (2004) Human African trypanosomiasis of the CNS: current issues and challenges. J Clin Invest 113: 496–504. doi: 10.1172/JCI21052
[2]
Mackey ZB, Baca AM, Mallari JP, Apsel B, Shelat A, et al. (2006) Discovery of trypanocidal compounds by whole cell HTS of Trypanosoma brucei. Chem Biol Drug Des 67: 355–363. doi: 10.1111/j.1747-0285.2006.00389.x
[3]
Raz B, Iten M, Grether-Buhler Y, Kaminsky R, Brun R (1997) The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop 68: 139–147. doi: 10.1016/S0001-706X(97)00079-X
[4]
Sykes ML, Avery VM (2009) Development of an Alamar Blue viability assay in 384-well format for high throughput whole cell screening of Trypanosoma brucei brucei bloodstream form strain 427. Am J Trop Med Hyg 81: 665–674. doi: 10.4269/ajtmh.2009.09-0015
[5]
Mackey ZB, O'Brien TC, Greenbaum DC, Blank RB, McKerrow JH (2004) A cathepsin B-like protease is required for host protein degradation in Trypanosoma brucei. J Biol Chem 279: 48426–48433. doi: 10.1074/jbc.M402470200
[6]
Gannavaram S, Vedvyas C, Debrabant A (2008) Conservation of the pro-apoptotic nuclease activity of endonuclease G in unicellular trypanosomatid parasites. J Cell Sci 121: 99–109. doi: 10.1242/jcs.014050
[7]
Fernandez Villamil SH, Baltanas R, Alonso GD, Vilchez Larrea SC, Torres HN, et al. (2008) TcPARP: A DNA damage-dependent poly(ADP-ribose) polymerase from Trypanosoma cruzi. Int J Parasitol 38: 277–287. doi: 10.1016/j.ijpara.2007.08.003
[8]
Ersfeld K, Barraclough H, Gull K (2005) Evolutionary relationships and protein domain architecture in an expanded calpain superfamily in kinetoplastid parasites. J Mol Evol 61: 742–757. doi: 10.1007/s00239-004-0272-8
[9]
Herman M, Gillies S, Michels PA, Rigden DJ (2006) Autophagy and related processes in trypanosomatids: insights from genomic and bioinformatic analyses. Autophagy 2: 107–118.
[10]
Herman M, Perez-Morga D, Schtickzelle N, Michels PA (2008) Turnover of glycosomes during life-cycle differentiation of Trypanosoma brucei. Autophagy 4: 294–308.
[11]
Helms MJ, Ambit A, Appleton P, Tetley L, Coombs GH, et al. (2006) Bloodstream form Trypanosoma brucei depend upon multiple metacaspases associated with RAB11-positive endosomes. J Cell Sci 119: 1105–1117. doi: 10.1242/jcs.02809
[12]
Torri AF, Hajduk SL (1988) Posttranscriptional regulation of cytochrome c expression during the developmental cycle of Trypanosoma brucei. Mol Cell Biol 8: 4625–4633.
[13]
Mamani-Matsuda M, Rambert J, Malvy D, Lejoly-Boisseau H, Daulouede S, et al. (2004) Quercetin induces apoptosis of Trypanosoma brucei gambiense and decreases the proinflammatory response of human macrophages. Antimicrob Agents Chemother 48: 924–929. doi: 10.1128/AAC.48.3.924-929.2004
[14]
Figarella K, Rawer M, Uzcategui NL, Kubata BK, Lauber K, et al. (2005) Prostaglandin D2 induces programmed cell death in Trypanosoma brucei bloodstream form. Cell Death Differ 12: 335–346. doi: 10.1038/sj.cdd.4401564
[15]
Figarella K, Uzcategui NL, Beck A, Schoenfeld C, Kubata BK, et al. (2006) Prostaglandin-induced programmed cell death in Trypanosoma brucei involves oxidative stress. Cell Death Differ 13: 1802–1814. doi: 10.1038/sj.cdd.4401862
[16]
Lanteri CA, Tidwell RR, Meshnick SR (2008) The mitochondrion is a site of trypanocidal action of the aromatic diamidine, DB75, in bloodstream forms of Trypanosoma brucei. Antimicrob Agents Chemother 52: 875–882. doi: 10.1128/AAC.00642-07
[17]
Nallan L, Bauer KD, Bendale P, Rivas K, Yokoyama K, et al. (2005) Protein farnesyltransferase inhibitors exhibit potent antimalarial activity. J Med Chem 48: 3704–3713. doi: 10.1021/jm0491039
[18]
Wirtz E, Leal S, Ochatt C, Cross GA (1999) A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasitol 99: 89–101. doi: 10.1016/S0166-6851(99)00002-X
[19]
Guo X, Ernst NL, Stuart KD (2008) The KREPA3 zinc finger motifs and OB-fold domain are essential for RNA editing and survival of Trypanosoma brucei. Mol Cell Biol 28: 6939–6953. doi: 10.1128/MCB.01115-08
[20]
Gillespie JR, Yokoyama K, Lu K, Eastman RT, Bollinger JG, et al. (2007) C-terminal proteolysis of prenylated proteins in trypanosomatids and RNA interference of enzymes required for the post-translational processing pathway of farnesylated proteins. Mol Biochem Parasitol 153: 115–124. doi: 10.1016/j.molbiopara.2007.02.009
[21]
Saveria T, Halbach A, Erdmann R, Volkmer-Engert R, Landgraf C, et al. (2007) Conservation of PEX19-binding motifs required for protein targeting to mammalian peroxisomal and trypanosome glycosomal membranes. Eukaryot Cell 6: 1439–1449. doi: 10.1128/EC.00084-07
[22]
Jensen BC, Brekken DL, Randall AC, Kifer CT, Parsons M (2005) Species specificity in ribosome biogenesis: a nonconserved phosphoprotein is required for formation of the large ribosomal subunit in Trypanosoma brucei. Eukaryot Cell 4: 30–35. doi: 10.1128/EC.4.1.30-35.2005
[23]
Carruthers VB, Cross GAM (1992) High-efficiency clonal growth of bloodstream- and insect- form Trypanosoma brucei on agarose plates. Proc Natl Acad Sci USA 89: 8818–8821. doi: 10.1073/pnas.89.18.8818
[24]
Schnaufer A, Panigrahi AK, Panicucci B, Igo RPJ, Wirtz E, et al. (2001) An RNA ligase essential for RNA editing and survival of the bloodstream form of Trypanosoma brucei. Science 291: 2159–2162. doi: 10.1126/science.1058955
[25]
Bakshi RP, Shapiro TA (2004) RNA interference of Trypanosoma brucei topoisomerase IB: both subunits are essential. Mol Biochem Parasitol 136: 249–255. doi: 10.1016/j.molbiopara.2004.04.006
[26]
Wang Z, Englund PT (2001) RNA interference of a trypanosome topoisomerase II causes progressive loss of mitochondrial DNA. EMBO J 20: 4674–4683. doi: 10.1093/emboj/20.17.4674
[27]
Gale MJ Jr, Carter V, Parsons M (1994) Cell cycle specific induction of an 89 kDa serine/threonine protein kinase activity in Trypanosoma brucei. J Cell Sci 107: 1825–1832.
[28]
Bodley AL, Shapiro TA (1995) Molecular and cytotoxic effects of camptothecin, a topoisomerase I inhibitor, on trypanosomes and Leishmania. Proc Natl Acad Sci USA 92: 3726–3730. doi: 10.1073/pnas.92.9.3726
[29]
Kulikowicz T, Shapiro TA (2006) Distinct genes encode type II topoisomerases for the nucleus and mitochondrion in the protozoan parasite Trypanosoma brucei. J Biol Chem 281: 3048–3056. doi: 10.1074/jbc.M505977200
[30]
Gould MK, Vu XL, Seebeck T, de Koning HP (2008) Propidium iodide-based methods for monitoring drug action in the kinetoplastidae: comparison with the Alamar Blue assay. Anal Biochem 382: 87–93. doi: 10.1016/j.ab.2008.07.036
[31]
Zilberstein D, Wilkes J, Hirumi H, Peregrine AS (1993) Fluorescence analysis of the interaction of isometamidium with Trypanosoma congolense. Biochem J 292: 31–35.
[32]
Miezan TW, Bronner U, Doua F, Cattand P, Rombo L (1994) Long-term exposure of Trypanosoma brucei gambiense to pentamidine in vitro. Trans R Soc Trop Med Hyg 88: 332–333. doi: 10.1016/0035-9203(94)90105-8
[33]
Wilson WD, Tanious FA, Mathis A, Tevis D, Hall JE, et al. (2008) Antiparasitic compounds that target DNA. Biochimie 90: 999–1014. doi: 10.1016/j.biochi.2008.02.017
[34]
Allen CL, Goulding D, Field MC (2003) Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J 22: 4991–5002. doi: 10.1093/emboj/cdg481
[35]
Strauss PR, Wang JC (1990) The TOP2 gene of Trypanosoma brucei: a single-copy gene that hsares extensive homology with other TOP2 genes encoding eukaryotic DNA topoisomerase II. Mol Biochem Parasitol 38: 141–150. doi: 10.1016/0166-6851(90)90214-7
[36]
Banerjee SK, Kessler PS, Saveria T, Parsons M (2005) Identification of trypanosomatid PEX19: Functional characterization reveals impact on cell growth and glycosome size and number. Mol Biochem Parasitol 142: 47–55. doi: 10.1016/j.molbiopara.2005.03.008
[37]
Haanstra JR, van TA, Kessler P, Reijnders W, Michels PA, et al. (2008) Compartmentation prevents a lethal turbo-explosion of glycolysis in trypanosomes. Proc Natl Acad Sci U S A 105: 17718–17723. doi: 10.1073/pnas.0806664105
[38]
Furuya T, Kessler P, Jardim A, Schnaufer A, Crudder C, et al. (2002) Glucose is toxic to glycosome-deficient trypanosomes. Proc Natl Acad Sci USA 99: 14177–14182. doi: 10.1073/pnas.222454899
[39]
Scocca JR, Shapiro TA (2008) A mitochondrial topoisomerase IA essential for late theta structure resolution in African trypanosomes. Mol Microbiol 67: 820–829. doi: 10.1111/j.1365-2958.2007.06087.x
[40]
Zwaal RF, Comfurius P, Bevers EM (2005) Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 62: 971–988. doi: 10.1007/s00018-005-4527-3
Vodnala SK, Ferella M, Lunden-Miguel H, Betha E, van Reet N, et al. (2009) Preclinical assessment of the treatment of second-stage african trypanosomiasis with cordycepin and deoxycoformycin. PLoS Negl Trop Dis 3: e495. doi: 10.1371/journal.pntd.0000495
[43]
Goldshmidt H, Matas D, Kabi A, Carmi S, Hope R, et al. (2010) Persistent ER stress induces the spliced leader RNA silencing pathway (SLS), leading to programmed cell death in Trypanosoma brucei. PLoS Pathog 6: e1000731. doi: 10.1371/journal.ppat.1000731
[44]
Bernhard SC, Nerima B, Maser P, Brun R (2007) Melarsoprol- and pentamidine-resistant Trypanosoma brucei rhodesiense populations and their cross-resistance. Int J Parasitol 37: 1443–1448. doi: 10.1016/j.ijpara.2007.05.007