Chagas disease, caused by the unicellular parasite Trypanosoma cruzi, claims 50,000 lives annually and is the leading cause of infectious myocarditis in the world. As current antichagastic therapies like nifurtimox and benznidazole are highly toxic, ineffective at parasite eradication, and subject to increasing resistance, novel therapeutics are urgently needed. Cruzain, the major cysteine protease of Trypanosoma cruzi, is one attractive drug target. In the current work, molecular dynamics simulations and a sequence alignment of a non-redundant, unbiased set of peptidase C1 family members are used to identify uncharacterized cruzain binding sites. The two sites identified may serve as targets for future pharmacological intervention.
References
[1]
WHO (2002) Control of Chagas disease. World Health Organ Tech Rep Ser 905: i–vi, 1–109, back cover.
[2]
Polticelli F, Zaini G, Bolli A, Antonini G, Gradoni L, et al. (2005) Probing the cruzain S2 recognition subsite: a kinetic and binding energy calculation study. Biochemistry 44: 2781–2789. doi: 10.1021/bi048417v
[3]
Senior K (2007) Chagas disease: moving towards global elimination. Lancet Infect Dis 7: 572. doi: 10.1016/S1473-3099(07)70194-9
[4]
McKerrow JH, Caffrey C, Kelly B, Loke P, Sajid M (2006) Proteases in parasitic diseases. Annu Rev Pathol 1: 497–536. doi: 10.1146/annurev.pathol.1.110304.100151
[5]
Du X, Guo C, Hansell E, Doyle PS, Caffrey CR, et al. (2002) Synthesis and structure-activity relationship study of potent trypanocidal thio semicarbazone inhibitors of the trypanosomal cysteine protease cruzain. J Med Chem 45: 2695–2707. doi: 10.1021/jm010459j
[6]
Rodriques Coura J, de Castro SL (2002) A critical review on Chagas disease chemotherapy. Mem Inst Oswaldo Cruz 97: 3–24. doi: 10.1590/S0074-02762002000100001
[7]
Bonney KM, Engman DM (2008) Chagas heart disease pathogenesis: one mechanism or many? Curr Mol Med 8: 510–518. doi: 10.2174/156652408785748004
[8]
de Castro SL (1993) The challenge of Chagas' disease chemotherapy: an update of drugs assayed against Trypanosoma cruzi. Acta Trop 53: 83–98. doi: 10.1016/0001-706X(93)90021-3
[9]
McKerrow JH, Doyle PS, Engel JC, Podust LM, Robertson SA, et al. (2009) Two approaches to discovering and developing new drugs for Chagas disease. Mem Inst Oswaldo Cruz 104: 263–269. doi: 10.1590/S0074-02762009000900034
[10]
Wilkinson SR, Taylor MC, Horn D, Kelly JM, Cheeseman I (2008) A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc Natl Acad Sci U S A 105: 5022–5027. doi: 10.1073/pnas.0711014105
[11]
Lauria-Pires L, Braga MS, Vexenat AC, Nitz N, Simoes-Barbosa A, et al. (2000) Progressive chronic Chagas heart disease ten years after treatment with anti-Trypanosoma cruzi nitroderivatives. Am J Trop Med Hyg 63: 111–118.
[12]
McKerrow JH, McGrath ME, Engel JC (1995) The cysteine protease of Trypanosoma cruzi as a model for antiparasite drug design. Parasitol Today 11: 279–282. doi: 10.1016/0169-4758(95)80039-5
[13]
Harth G, Andrews N, Mills AA, Engel JC, Smith R, et al. (1993) Peptide-fluoromethyl ketones arrest intracellular replication and intercellular transmission of Trypanosoma cruzi. Mol Biochem Parasitol 58: 17–24. doi: 10.1016/0166-6851(93)90086-D
[14]
Tomas AM, Miles MA, Kelly JM (1997) Overexpression of cruzipain, the major cysteine proteinase of Trypanosoma cruzi, is associated with enhanced metacyclogenesis. Eur J Biochem 244: 596–603. doi: 10.1111/j.1432-1033.1997.t01-1-00596.x
[15]
McKerrow JH, Engel JC, Caffrey CR (1999) Cysteine protease inhibitors as chemotherapy for parasitic infections. Bioorg Med Chem 7: 639–644. doi: 10.1016/S0968-0896(99)00008-5
[16]
McKerrow JH (1999) Development of cysteine protease inhibitors as chemotherapy for parasitic diseases: insights on safety, target validation, and mechanism of action. Int J Parasitol 29: 833–837. doi: 10.1016/S0020-7519(99)00044-2
[17]
Cazzulo JJ (2002) Proteinases of Trypanosoma cruzi: patential targets for the chemotherapy of Changas desease. Curr Top Med Chem 2: 1261–1271. doi: 10.2174/1568026023392995
[18]
Engel JC, Doyle PS, Hsieh I, McKerrow JH (1998) Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. J Exp Med 188: 725–734. doi: 10.1084/jem.188.4.725
[19]
Engel JC, Doyle PS, Palmer J, Hsieh I, Bainton DF, et al. (1998) Cysteine protease inhibitors alter Golgi complex ultrastructure and function in Trypanosoma cruzi. J Cell Sci 111(Pt 5): 597–606.
[20]
Chambers AF, Matrisian LM (1997) Changing views of the role of matrix metalloproteinases in metastasis. Journal of the National Cancer Institute 89: 1260–1270. doi: 10.1093/jnci/89.17.1260
[21]
Colasanti M, Salvati L, Venturini G, Ascenzi P, Gradoni L (2001) Cysteine protease as a target for nitric oxide in parasitic organisms. Trends Parasitol 17: 575. doi: 10.1016/S1471-4922(01)02191-2
[22]
Ascenzi P, Salvati L, Bolognesi M, Colasanti M, Polticelli F, et al. (2001) Inhibition of cysteine protease activity by NO-donors. Curr Protein Pept Sci 2: 137–153. doi: 10.2174/1389203013381170
[23]
Barr SC, Warner KL, Kornreic BG, Piscitelli J, Wolfe A, et al. (2005) A cysteine protease inhibitor protects dogs from cardiac damage during infection by Trypanosoma cruzi. Antimicrob Agents Chemother 49: 5160–5161. doi: 10.1128/AAC.49.12.5160-5161.2005
[24]
Schames JR, Henchman RH, Siegel JS, Sotriffer CA, Ni H, et al. (2004) Discovery of a novel binding trench in HIV integrase. Journal of medicinal chemistry 47: 1879–1881. doi: 10.1021/jm0341913
[25]
Huang L, Brinen LS, Ellman JA (2003) Crystal structures of reversible ketone-based inhibitors of the cysteine protease cruzain. Bioorg Med Chem 11: 21–29. doi: 10.1016/S0968-0896(02)00427-3
[26]
Soares MJ (1999) The reservosome of Trypanosoma cruzi epimastigotes: an organelle of the endocytic pathway with a role on metacyclogenesis. Mem Inst Oswaldo Cruz 94: Suppl 1139–141. doi: 10.1590/S0074-02761999000700015
[27]
Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, et al. (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35: W522–W525. doi: 10.1093/nar/gkm276
[28]
Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32: W665–W667. doi: 10.1093/nar/gkh381
[29]
Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, et al. (2005) The Amber biomolecular simulation programs. J Comput Chem 26: 1668–1688. doi: 10.1002/jcc.20290
[30]
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. The Journal of chemical physics 79: 926. doi: 10.1063/1.445869
[31]
Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25: 1157–1174. doi: 10.1002/jcc.20035
[32]
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, et al. (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65: 712–725. doi: 10.1002/prot.21123
[33]
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, et al. (2005) Scalable molecular dynamics with NAMD. Journal of computational chemistry 26: 1781–1802. doi: 10.1002/jcc.20289
[34]
Christen M, Hunenberger PH, Bakowies D, Baron R, Burgi R, et al. (2005) The GROMOS software for biomolecular simulation: GROMOS05. J Comput Chem 26: 1719–1751. doi: 10.1002/jcc.20303
[35]
Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, et al. (1999) Peptide Folding: When Simulation Meets Experiment. Angew Chem Int Ed 38: 236–240. doi: 10.1002/(sici)1521-3773(19990115)38:1/2<236::aid-anie236>3.3.co;2-d
[36]
Duschak VG, Couto AS (2009) Cruzipain, the major cysteine protease of Trypanosoma cruzi: a sulfated glycoprotein antigen as relevant candidate for vaccine development and drug target. A review. Curr Med Chem 16: 3174–3202. doi: 10.2174/092986709788802971
[37]
Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DB, et al. (1995) Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. Chem Biol 2: 317–324. doi: 10.1016/1074-5521(95)90050-0
[38]
Amaro RE, Baron R, McCammon JA (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. Journal of computer-aided molecular design 22: 693–705. doi: 10.1007/s10822-007-9159-2
[39]
Lin JH, Perryman AL, Schames JR, McCammon JA (2002) Computational drug design accommodating receptor flexibility: the relaxed complex scheme. Journal of the American Chemical Society 124: 5632–5633. doi: 10.1021/ja0260162
[40]
Amaro RE, Schnaufer A, Interthal H, Hol W, Stuart KD, et al. (2008) Discovery of drug-like inhibitors of an essential RNA-editing ligase in Trypanosoma brucei. Proceedings of the National Academy of Sciences 105: 17278–17283. doi: 10.1073/pnas.0805820105
[41]
Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, et al. (2005) The Universal Protein Resource (UniProt). Nucleic Acids Research 33: D154–159. doi: 10.1093/nar/gki070
[42]
Rawlings ND, Morton FR, Kok CY, Kong J, Barrett AJ (2008) MEROPS: the peptidase database. Nucleic Acids Res 36: D320–325. doi: 10.1093/nar/gkm954
[43]
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The Protein Data Bank. Nucleic Acids Research 28: 235–242. doi: 10.1093/nar/28.1.235
[44]
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948. doi: 10.1093/bioinformatics/btm404
[45]
Roberts E, Eargle J, Wright D, Luthey-Schulten Z (2006) MultiSeq: unifying sequence and structure data for evolutionary analysis. BMC bioinformatics 7: 382. doi: 10.1186/1471-2105-7-382
[46]
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33–38. doi: 10.1016/0263-7855(96)00018-5
[47]
Russell RB, Barton GJ (1992) Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels. Proteins 14: 309–323. doi: 10.1002/prot.340140216
[48]
Brinen LS, Hansell E, Cheng J, Roush WR, McKerrow JH, et al. (2000) A target within the target: probing cruzain's P1′ site to define structural determinants for the Chagas' disease protease. Structure 8: 831–840. doi: 10.1016/S0969-2126(00)00173-8
[49]
Turk D, Guncar G, Podobnik M, Turk B (1998) Revised definition of substrate binding sites of papain-like cysteine proteases. Biol Chem 379: 137–147. doi: 10.1515/bchm.1998.379.2.137
[50]
Douc-Rasy S, Riou JF, Ahomadegbe JC, Riou G (1988) ATP-independent DNA topoisomerase II as potential drug target in trypanosomes. Biol Cell 64: 145–156. doi: 10.1016/0248-4900(88)90074-3
[51]
Pate PG, Wolfson JS, McHugh GL, Pan SC, Swartz MN (1986) Novobiocin antagonism of amastigotes of Trypanosoma cruzi growing in cell-free medium. Antimicrob Agents Chemother 29: 426–431. doi: 10.1128/AAC.29.3.426
[52]
Kerr ID, Lee JH, Farady CJ, Marion R, Rickert M, et al. (2009) Vinyl sulfones as antiparasitic agents and a structural basis for drug design. J Biol Chem 284: 25697–25703. doi: 10.1074/jbc.M109.014340
[53]
Gillmor SA, Craik CS, Fletterick RJ (1997) Structural determinants of specificity in the cysteine protease cruzain. Protein Sci 6: 1603–1611. doi: 10.1002/pro.5560060801
[54]
Allende LM, Garcia-Perez MA, Moreno A, Corell A, Carasol M, et al. (2001) Cathepsin C gene: First compound heterozygous patient with Papillon-Lefevre syndrome and a novel symptomless mutation. Hum Mutat 17: 152–153. doi: 10.1002/1098-1004(200102)17:2<152::AID-HUMU10>3.0.CO;2-#
[55]
Yang Y, Bai X, Liu H, Li L, Cao C, et al. (2007) Novel mutations of cathepsin C gene in two Chinese patients with Papillon-Lefevre syndrome. J Dent Res 86: 735–738. doi: 10.1177/154405910708600809
[56]
Hart TC, Hart PS, Michalec MD, Zhang Y, Firatli E, et al. (2000) Haim-Munk syndrome and Papillon-Lefevre syndrome are allelic mutations in cathepsin C. J Med Genet 37: 88–94. doi: 10.1136/jmg.37.2.88
[57]
Toomes C, James J, Wood AJ, Wu CL, McCormick D, et al. (1999) Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis. Nat Genet 23: 421–424. doi: 10.1038/70525