Background Giardia lamblia parasitizes the human small intestine to cause diarrhea and malabsorption. It undergoes differentiation from a pathogenic trophozoite form into a resistant walled cyst form. Few cyst proteins have been identified to date, including three cyst wall proteins (CWPs) and one High Cysteine Non-variant Cyst protein (HCNCp). They are highly expressed during encystation and are mainly targeted to the cyst wall. Methodology and Principal Findings To identify new cyst wall proteins, we searched the G. lamblia genome data base with the sequence of the Cryptosporidium parvum oocyst wall protein as a query and found an Epidermal Growth Factor (EGF)-like Cyst Protein (EGFCP1). Sequence analysis revealed that the EGF-like repeats of the EGFCP1 are similar to those of the tenascin family of extracellular matrix glycoproteins. EGFCP1 and HCNCp have a higher percentage of cysteine than CWPs, but EGFCP1 has no C-terminal transmembrane region found in HCNCp. Like CWPs and HCNCp, the EGFCP1 protein (but not transcript) was expressed at higher levels during encystation and it was localized to encystation-specific vesicles in encysting trophozoites. Like HCNCp, EGFCP1 was localized to the encystation-specific vesicles, cyst wall and cell body of cysts, suggesting that they may share a common trafficking pathway. Interestingly, overexpression of EGFCP1 induced cyst formation and deletion of the signal peptide from EGFCP1 reduced its protein levels and cyst formation, suggesting that EGFCP1 may help mediate cyst wall synthesis. We also found that five other putative EGFCPs have similar expression profiles and similar locations and that the cyst formation was induced upon their overexpression. Conclusions and Significance Our results suggest that EGFCPs may function like cyst wall proteins, involved in differentiation of G. lamblia trophozoites into cysts. The results lead to greater understanding of parasite cyst walls and provide valuable information that helps develop ways to interrupt the G. lamblia life cycle.
References
[1]
Wolfe MS (1992) Giardiasis. Clin Microbiol Rev 5: 93–100.
[2]
Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14: 447–475. doi: 10.1128/CMR.14.3.447-475.2001
[3]
Buret AG (2007) Mechanisms of epithelial dysfunction in giardiasis. Gut 56: 316–317. doi: 10.1136/gut.2006.107771
[4]
Gillin FD, Reiner DS, McCaffery JM (1996) Cell biology of the primitive eukaryote Giardia lamblia. Annu Rev Microbiol 50: 679–705. doi: 10.1146/annurev.micro.50.1.679
[5]
Eichinger D (2001) Encystation in parasitic protozoa. Curr Opin Microbiol 4: 421–426. doi: 10.1016/S1369-5274(00)00229-0
[6]
Gerwig GJ, van Kuik JA, Leeflang BR, Kamerling JP, Vliegenthart JF, et al. (2002) The Giardia intestinalis filamentous cyst wall contains a novel beta(1–3)-N-acetyl-D-galactosamine polymer: a structural and conformational study. Glycobiology 12: 499–505. doi: 10.1093/glycob/cwf059
[7]
Lujan HD, Mowatt MR, Conrad JT, Bowers B, Nash TE (1995) Identification of a novel Giardia lamblia cyst wall protein with leucine-rich repeats. Implications for secretory granule formation and protein assembly into the cyst wall. J Biol Chem 270: 29307–29313. doi: 10.1074/jbc.270.49.29307
[8]
Mowatt MR, Lujan HD, Cotton DB, Bower B, Yee J, et al. (1995) Developmentally regulated expression of a Giardia lamblia cyst wall protein gene. Mol Microb 15: 955–963. doi: 10.1111/j.1365-2958.1995.tb02364.x
[9]
Sun CH, McCaffery JM, Reiner DS, Gillin FD (2003) Mining the Giardia lamblia genome for new cyst wall proteins. J Biol Chem 278: 21701–21708. doi: 10.1074/jbc.M302023200
[10]
Van Keulen H, Steimle PA, Bulik DA, Borowiak RK, Jarroll EL (1998) Cloning of two putative Giardia lamblia glucosamine 6-phosphate isomerase genes only one of which is transcriptionally activated during encystment. J Eukaryot Microbiol 45: 637–642. doi: 10.1111/j.1550-7408.1998.tb04560.x
[11]
Knodler LA, Svard SG, Silberman JD, Davids BJ, Gillin FD (1999) Developmental gene regulation in Giardia lamblia: first evidence for an encystation-specific promoter and differential 5′ mRNA processing. Mol Microbiol 34: 327–340. doi: 10.1046/j.1365-2958.1999.01602.x
[12]
Marti M, Li Y, Schraner EM, Wild P, K?hler P, Hehl AB (2003) The secretory apparatus of an ancient eukaryote: protein sorting to separate export pathways occurs before formation of transient Golgi-like compartments. Mol Biol Cell 14: 1433–1447. doi: 10.1091/mbc.E02-08-0467
[13]
Stefanic S, Palm D, Sv?rd SG, Hehl AB (2006) Organelle proteomics reveals cargo maturation mechanisms associated with Golgi-like encystation vesicles in the early-diverged protozoan Giardia lamblia. J Biol Chem 281: 7595–604. doi: 10.1074/jbc.M510940200
[14]
Gottig N, Elías EV, Quiroga R, Nores MJ, Solari AJ, et al. (2006) Active and passive mechanisms drive secretory granule biogenesis during differentiation of the intestinal parasite Giardia lamblia. J Biol Chem 281: 18156–18166. doi: 10.1074/jbc.M602081200
[15]
Reiner DS, McCaffery JM, Gillin FD (2001) Reversible interruption of Giardia lamblia cyst wall protein transport in a novel regulated secretory pathway. Cell Microbiol 3: 459–472. doi: 10.1046/j.1462-5822.2001.00129.x
[16]
Davids BJ, Reiner DS, Birkeland SR, Preheim SP, Cipriano MJ, et al. (2006) A new family of giardial cysteine-rich non-VSP protein genes and a novel cyst protein. PLoS ONE 1: e44. doi: 10.1371/journal.pone.0000044
[17]
McCaffery JM, Faubert GM, Gillin FD (1994) Giardia lamblia: traffic of a trophozoite variant surface protein and a major cyst wall epitope during growth, encystation, and antigenic switching. Exp Parasitol 79: 236–249. doi: 10.1006/expr.1994.1087
[18]
Spano F, Puri C, Ranucci L, Putignani L, Crisanti A (1997) Cloning of the entire COWP gene of Cryptosporidium parvum and ultrastructural localization of the protein during sexual parasite development. Parasitology 114: 427–437. doi: 10.1017/S0031182096008761
[19]
Templeton TJ, Lancto CA, Vigdorovich V, Liu C, London NR, et al. (2004) The Cryptosporidium oocyst wall protein is a member of a multigene family and has a homolog in Toxoplasma. Infect Immun 72: 980–987. doi: 10.1128/IAI.72.2.980-987.2004
[20]
Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, et al. (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317: 1921–1926. doi: 10.1126/science.1143837
[21]
Orend G, Chiquet-Ehrismann R (2006) Tenascin-C induced signaling in cancer. Cancer Lett 244: 143–163. doi: 10.1016/j.canlet.2006.02.017
[22]
Appella E, Weber IT, Blasi F (1988) Structure and function of epidermal growth factor-like regions in proteins. FEBS Lett 231: 1–4. doi: 10.1016/0014-5793(88)80690-2
[23]
Keister DB (1983) Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77: 487–488. doi: 10.1016/0035-9203(83)90120-7
[24]
Su LH, Lee GA, Huang YC, Chen YH, Sun CH (2007) Neomycin and puromycin affect gene expression in Giardia lamblia stable transfection. Mol Biochem Parasitol 156: 124–135. doi: 10.1016/j.molbiopara.2007.07.015
[25]
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein data base search programs. Nucleic Acids Res 25: 3389–3402. doi: 10.1093/nar/25.17.3389
[26]
Singer SM, Yee J, Nash TE (1998) Episomal and integrated maintenance of foreign DNA in Giardia lamblia. Mol Biochem Parasitol 92: 59–69. doi: 10.1016/S0166-6851(97)00225-9
[27]
Chen YH, Su LH, Sun CH (2008) Incomplete nonsense-mediated mRNA decay in Giardia lamblia. Int J Parasitol 38: 1305–1317. doi: 10.1016/j.ijpara.2008.02.006
[28]
Sun CH, Palm D, McArthur AG, Svard SG, Gillin FD (2002) A novel Myb-related protein involved in transcriptional activation of encystation genes in Giardia lamblia. Mol Microbiol 46: 971–984. doi: 10.1046/j.1365-2958.2002.03233.x
[29]
Sun CH, Chou CF, Tai JH (1998) Stable DNA transfection of the primitive protozoan pathogen Giardia lamblia. Mol Biochem Parasitol 92: 123–132. doi: 10.1016/S0166-6851(97)00239-9
[30]
Huang YC, Su LH, Lee GA, Chiu PW, Cho CC, et al. (2008) Regulation of cyst wall protein promoters by Myb2 in Giardia lamblia. J Biol Chem 283: 31021–31029. doi: 10.1074/jbc.M805023200
[31]
Sun CH, Tai JH (1999) Identification and characterization of a ran gene promoter in the primitive protozoan pathogen Giardia lamblia. J Biol Chem 274: 19699–19706. doi: 10.1074/jbc.274.28.19699
[32]
Yee J, Mowatt MR, Dennis PP, Nash TE (2000) Transcriptional analysis of the glutamate dehydrogenase gene in the primitive eukaryote, Giardia lamblia. Identification of a primordial gene promoter. J Biol Chem 275: 11432–11439. doi: 10.1074/jbc.275.15.11432
[33]
Peattie DA, Alonso RA, Hein A, Caulfield JP (1989) Ultrastructural localization of giardins to the edges of disk microribbons of Giarida lamblia and the nucleotide and deduced protein sequence of alpha giardin. J Cell Biol 109: 2323–2335. doi: 10.1083/jcb.109.5.2323
[34]
Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering 10: 1–6. doi: 10.1093/protein/10.1.1
[35]
Ruiz C, Huang W, Hegi ME, Lange K, Hamou MF, et al. (2004) Growth promoting signaling by tenascin-C. Cancer Res 64: 7377–7385. doi: 10.1158/0008-5472.CAN-04-1234
[36]
Balzar M, Briaire-de Bruijn IH, Rees-Bakker HAM, Prins FA, Helfrich F, et al. (2001) Epidermal Growth Factor-Like Repeats Mediate Lateral and Reciprocal Interactions of Ep-CAM Molecules in Homophilic Adhesions. Mol Cell Biol 21: 2570–2580. doi: 10.1128/MCB.21.7.2570-2580.2001
[37]
Baron M (2003) An overview of the Notch signalling pathway. Semin Cell Dev Biol 14: 113–119. doi: 10.1016/S1084-9521(02)00179-9
[38]
Bernard VD, Peanasky RJ (1993) The serine protease inhibitor family from Ascaris suum: chemical determination of the five disulfide bridges. Arch Biochem Biophys 303: 367–376. doi: 10.1006/abbi.1993.1297
[39]
Bania J, Stachowiak D, Polanowski A (1999) Primary structure and properties of the cathepsin G/chymotrypsin inhibitor from the larval hemolymph of Apis mellifera. Eur J Biochem 262: 680–687. doi: 10.1046/j.1432-1327.1999.00406.x
[40]
Mignogna G, Pascarella S, Wechselberger C, Hinterleitner C, Mollay C, et al. (1996) BSTI, a trypsin inhibitor from skin secretions of Bombina bombina related to protease inhibitors of nematodes. Protein Sci 5: 357–362. doi: 10.1002/pro.5560050220
[41]
Boag PR, Ranganathan S, Newton SE, Gasser RB (2002) A male-specific (cysteine-rich) protein of Oesophagostomum dentatum (Strongylida) with structural characteristics of a serine protease inhibitor containing two trypsin inhibitor-like domains. Parasitology 125: 445–455. doi: 10.1017/S0031182002002329
[42]
Ratner DM, Cui J, Steffen M, Moore LL, Robbins PW, Samuelson J (2008) Changes in the N-glycome, glycoproteins with Asn-linked glycans, of Giardia lamblia with differentiation from trophozoites to cysts. Eukaryot Cell 7: 1930–1940. doi: 10.1128/EC.00268-08
[43]
Wang CH, Su LH, Sun CH (2007) A novel ARID/Bright-like protein involved in transcriptional activation of cyst wall protein 1 gene in Giardia lamblia. J Biol Chem 282: 8905–8914. doi: 10.1074/jbc.M611170200
[44]
Prieto AL, Andersson-Fisone C, Crossin KL (1992) Characterization of multiple adhesive and counteradhesive domains in the extracellular matrix protein cytotactin. J Cell Biol 119: 663–678. doi: 10.1083/jcb.119.3.663
[45]
Swindle CS, Tran KT, Johnson TD, Banerjee P, Mayes AM, et al. (2001) Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. J Cell Biol 154: 459–468. doi: 10.1083/jcb.200103103
[46]
Sawmynaden K, Saouros S, Friedrich N, Marchant J, Simpson P, et al. (2008) Structural insights into microneme protein assembly reveal a new mode of EGF domain recognition. EMBO Rep 9: 1149–1155. doi: 10.1038/embor.2008.179
[47]
Nguyen TT, Qasim MA, Morris S, Lu CC, Hill D, et al. (1999) Expression and characterization of elastase inhibitors from the ascarid nematodes Anisakis simplex and Ascaris suum. Mol Biochem Parasitol 102: 79–89. doi: 10.1016/S0166-6851(99)00088-2
[48]
Ivanova AV, Goparaju CM, Ivanov SV, Nonaka D, Cruz C, et al. (2009) Protumorigenic role of HAPLN1 and its IgV domain in malignant pleural mesothelioma. Clin Cancer Res 15: 2602–2611. doi: 10.1158/1078-0432.CCR-08-2755
[49]
Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31: 3497–3500. doi: 10.1093/nar/gkg500
[50]
Reiner DS, Ankarklev J, Troell K, Palm D, Bernander R, et al. (2008) Synchronisation of Giardia lamblia: identification of cell cycle stage-specific genes and a differentiation restriction point. Int J Parasitol 38: 935–944. doi: 10.1016/j.ijpara.2007.12.005
[51]
Campbell LD, Bork P (1993) Epidermal growth factor-like modules. Current Opinions in Structural Biology 3: 385–392. doi: 10.1016/s0959-440x(05)80111-3