全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Epidemiology of Cross-Species Giardia duodenalis Transmission in Western Uganda

DOI: 10.1371/journal.pntd.0000683

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Giardia duodenalis is prevalent in tropical settings where diverse opportunities exist for transmission between people and animals. We conducted a cross-sectional study of G. duodenalis in people, livestock, and wild primates near Kibale National Park, Uganda, where human-livestock-wildlife interaction is high due to habitat disturbance. Our goal was to infer the cross-species transmission potential of G. duodenalis using molecular methods and to investigate clinical consequences of infection. Methodology/Principal Findings Real-time PCR on DNA extracted from fecal samples revealed a combined prevalence of G. duodenalis in people from three villages of 44/108 (40.7%), with prevalence reaching 67.5% in one village. Prevalence rates in livestock and primates were 12.4% and 11.1%, respectively. Age was associated with G. duodenalis infection in people (higher prevalence in individuals ≤15 years) and livestock (higher prevalence in subadult versus adult animals), but other potential risk factors in people (gender, contact with domestic animals, working in fields, working in forests, source of drinking water, and medication use) were not. G. duodenalis infection was not associated with gastrointestinal symptoms in people, nor was clinical disease noted in livestock or primates. Sequence analysis of four G. duodenalis genes identified assemblage AII in humans, assemblage BIV in humans and endangered red colobus monkeys, and assemblage E in livestock and red colobus, representing the first documentation of assemblage E in a non-human primate. In addition, genetic relationships within the BIV assemblage revealed sub-clades of identical G. duodenalis sequences from humans and red colobus. Conclusions/Significance Our finding of G. duodenalis in people and primates (assemblage BIV) and livestock and primates (assemblage E) underscores that cross-species transmission of multiple G. duodenalis assemblages may occur in locations such as western Uganda where people, livestock, and primates overlap in their use of habitat. Our data also demonstrate a high but locally variable prevalence of G. duodenalis in people from western Uganda, but little evidence of associated clinical disease. Reverse zoonotic G. duodenalis transmission may be particularly frequent in tropical settings where anthropogenic habitat disturbance forces people and livestock to interact at high rates with wildlife, and this could have negative consequences for wildlife conservation.

References

[1]  Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14: 447–475. doi: 10.1128/CMR.14.3.447-475.2001
[2]  Thompson RC (2000) Giardiasis as a re-emerging infectious disease and its zoonotic potential. Int J Parasitol 30: 1259–1267. doi: 10.1016/S0020-7519(00)00127-2
[3]  Thompson RCA (2004) Epidemiology and zoonotic potential of Giardia infections. In: Sterling CR, Adam RD, editors. World class parasites, vol 8: the pathogenic enteric protozoa: Giardia, Entamoeba, Cryptosporidium and Cyclospora. Boston, Massachusetts: Kluwer Academic Publishers. pp. 1–14.
[4]  Sprong H, Caccio SM, van der Giessen JW (2009) Identification of Zoonotic Genotypes of Giardia duodenalis. PLoS Negl Trop Dis 3: e558. doi: 10.1371/journal.pntd.0000558
[5]  Hunter PR, Thompson RC (2005) The zoonotic transmission of Giardia and Cryptosporidium. Int J Parasitol 35: 1181–1190. doi: 10.1016/j.ijpara.2005.07.009
[6]  Lalle M, Pozio E, Capelli G, Bruschi F, Crotti D, et al. (2005) Genetic heterogeneity at the beta-giardin locus among human and animal isolates of Giardia duodenalis and identification of potentially zoonotic subgenotypes. Int J Parasitol 35: 207–213. doi: 10.1016/j.ijpara.2004.10.022
[7]  Graczyk TK, Bosco-Nizeyi J, Ssebide B, Thompson RC, Read C, et al. (2002) Anthropozoonotic Giardia duodenalis genotype (assemblage) A infections in habitats of free-ranging human-habituated gorillas, Uganda. J Parasitol 88: 905–909. doi: 10.1645/0022-3395(2002)088[0905:AGDGAA]2.0.CO;2
[8]  Monis PT, Caccio SM, Thompson RC (2009) Variation in Giardia: towards a taxonomic revision of the genus. Trends Parasitol 25: 93–100. doi: 10.1016/j.pt.2008.11.006
[9]  Sulaiman IM, Fayer R, Bern C, Gilman RH, Trout JM, et al. (2003) Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis. Emerg Infect Dis 9: 1444–1452. doi: 10.3201/eid0911.030084
[10]  Itagaki T, Kinoshita S, Aoki M, Itoh N, Saeki H, et al. (2005) Genotyping of Giardia intestinalis from domestic and wild animals in Japan using glutamete dehydrogenase gene sequencing. Vet Parasitol 133: 283–287. doi: 10.1016/j.vetpar.2005.05.061
[11]  Hamnes IS, Gjerde BK, Forberg T, Robertson LJ (2007) Occurrence of Giardia and Cryptosporidium in Norwegian red foxes (Vulpes vulpes). Vet Parasitol 143: 347–353. doi: 10.1016/j.vetpar.2006.08.032
[12]  Robertson LJ, Forberg T, Hermansen L, Hamnes IS, Gjerde B (2007) Giardia duodenalis cysts isolated from wild moose and reindeer in Norway: Genetic characterization by PCR-RFLP and sequence analysis at two genes. J Wildl Dis 43: 576–585. doi: 10.7589/0090-3558-43.4.576
[13]  McCarthy S, Ng J, Gordon C, Miller R, Wyber A, et al. (2008) Prevalence of Cryptosporidium and Giardia species in animals in irrigation catchments in the southwest of Australia. Exp Parasitol 118: 596–599. doi: 10.1016/j.exppara.2007.10.014
[14]  Goldberg TL, Gillespie TR, Rwego IB (2008) Health and disease in the people, primates, and domestic animals of Kibale National Park: implications for conservation. In: Wrangham R, Ross E, editors. Science and Conservation in African Forests: The Benefits of Long-Term Research. Cambridge: Cambridge University Press. pp. 75–87.
[15]  Goldberg TL, Gillespie TR, Rwego IB, Estoff EE, Chapman CA (2008) Forest fragmentation as cause of bacterial transmission among primates, humans, and livestock, Uganda. Emerg Infect Dis 14: 1375–1382. doi: 10.3201/eid1409.071196
[16]  Salzer JS, Rwego IB, Goldberg TL, Kuhlenschmidt MS, Gillespie TR (2007) Giardia sp. and Cryptosporidium sp. infections in primates in fragmented and undisturbed forest in western Uganda. J Parasitol 93: 439–440. doi: 10.1645/GE-970R1.1
[17]  Struhsaker TT (1997) Ecology of an African Rain Forest: Logging in Kibale and the conflict between conservation and exploitation. Gainesville: University Press of Florida.
[18]  Chapman CA, Lambert JE (2000) Habitat alteration and the conservation of African primates: case study of Kibale National Park, Uganda. Am J Primatol 50: 169–185. doi: 10.1002/(SICI)1098-2345(200003)50:3<169::AID-AJP1>3.0.CO;2-P
[19]  Chapman CA, Struhsaker TT, Lambert JE (2005) Thirty years of research in Kibale National Park, Uganda, reveals a complex picture for conservation. Int J Primatol 26: 539–555. doi: 10.1007/s10764-005-4365-z
[20]  Onderdonk DA, Chapman CA (2000) Coping with forest fragmentation: The primates of Kibale National Park, Uganda. Int J Primatol 21: 587–611.
[21]  Gillespie TR, Chapman CA (2006) Prediction of parasite infection dynamics in primate metapopulations based on attributes of forest fragmentation. Cons Biol 20: 441–448. doi: 10.1111/j.1523-1739.2006.00290.x
[22]  Sambrook J, Russell D (2001) Molecular Cloning: A Laboratory Manual. 3rd Edition. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
[23]  Verweij JJ, Blange RA, Templeton K, Schinkel J, Brienen EA, et al. (2004) Simultaneous detection of Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum in fecal samples by using multiplex real-time PCR. J Clin Microbiol 42: 1220–1223. doi: 10.1128/JCM.42.3.1220-1223.2004
[24]  Traub RJ, Robertson ID, Irwin P, Mencke N, Monis P, et al. (2003) Humans, dogs and parasitic zoonoses–unravelling the relationships in a remote endemic community in northeast India using molecular tools. Parasitol Res 90: Suppl 3S156–157. doi: 10.1007/s00436-003-0925-3
[25]  Read CM, Monis PT, Thompson RC (2004) Discrimination of all genotypes of Giardia duodenalis at the glutamate dehydrogenase locus using PCR-RFLP. Infect Genet Evol 4: 125–130. doi: 10.1016/j.meegid.2004.02.001
[26]  Hopkins RM, Meloni BP, Groth DM, Wetherall JD, Reynoldson JA, et al. (1997) Ribosomal RNA sequencing reveals differences between the genotypes of Giardia isolates recovered from humans and dogs living in the same locality. J Parasitol 83: 44–51. doi: 10.2307/3284315
[27]  Read C, Walters J, Robertson ID, Thompson RC (2002) Correlation between genotype of Giardia duodenalis and diarrhoea. Int J Parasitol 32: 229–231. doi: 10.1016/S0020-7519(01)00340-X
[28]  Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402. doi: 10.1093/nar/25.17.3389
[29]  Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599. doi: 10.1093/molbev/msm092
[30]  Sahagun J, Clavel A, Goni P, Seral C, Llorente MT, et al. (2008) Correlation between the presence of symptoms and the Giardia duodenalis genotype. Eur J Clin Microbiol Infect Dis 27: 81–83. doi: 10.1007/s10096-007-0404-3
[31]  Goldberg TL (2003) Application of phylogeny reconstruction and character-evolution analysis to inferring patterns of directional microbial transmission. Prev Vet Med 61: 59–70. doi: 10.1016/S0167-5877(03)00161-2
[32]  Thompson RC, Palmer CS, O'Handley R (2008) The public health and clinical significance of Giardia and Cryptosporidium in domestic animals. Vet J 177: 18–25. doi: 10.1016/j.tvjl.2007.09.022
[33]  Caccio SM, Ryan U (2008) Molecular epidemiology of giardiasis. Mol Biochem Parasitol 160: 75–80. doi: 10.1016/j.molbiopara.2008.04.006
[34]  Levecke B, Geldhof P, Claerebout E, Dorny P, Vercammen F, et al. (2009) Molecular characterisation of Giardia duodenalis in captive non-human primates reveals mixed assemblage A and B infections and novel polymorphisms. Int J Parasitol. doi: 10.1016/j.ijpara.2009.05.013
[35]  Foronda P, Bargues MD, Abreu-Acosta N, Periago MV, Valero MA, et al. (2008) Identification of genotypes of Giardia intestinalis of human isolates in Egypt. Parasitol Res 103: 1177–1181. doi: 10.1007/s00436-008-1113-2
[36]  Volotao AC, Costa-Macedo LM, Haddad FS, Brandao A, Peralta JM, et al. (2007) Genotyping of Giardia duodenalis from human and animal samples from Brazil using beta-giardin gene: a phylogenetic analysis. Acta Trop 102: 10–19. doi: 10.1016/j.actatropica.2007.02.010
[37]  Ayalew D, Boelee E, Endeshaw T, Petros B (2008) Cryptosporidium and Giardia infection and drinking water sources among children in Lege Dini, Ethiopia. Trop Med Int Health. doi: 10.1111/j.1365-3156.2008.02024.x
[38]  Dib HH, Lu SQ, Wen SF (2008) Prevalence of Giardia lamblia with or without diarrhea in South East, South East Asia and the Far East. Parasitol Res 103: 239–251. doi: 10.1007/s00436-008-0968-6
[39]  Mote KE, Makanga B, Kisakye JJM (2005) Prevalence of intestinal parasites among school children in Moyo District, Uganda. Health Policy and Development 3: 184–186.
[40]  Kabatereine NB, Kemijumbi J, Kazibwe F, Onapa AW (1997) Human intestinal parasites in primary school children in Kampala, Uganda. East Afr Med J 74: 311–314.
[41]  Tumwine JK, Kekitiinwa A, Nabukeera N, Akiyoshi DE, Rich SM, et al. (2003) Cryptosporidium parvum in children with diarrhea in Mulago Hospital, Kampala, Uganda. Am J Trop Med Hyg 68: 710–715.
[42]  Cordon PG, Soldan OCP, Vasquez VF, Soto VJR, Bordes SL, et al. (2008) Prevalence of enteroparasites and genotyping of Giardia lamblia in Peruvian children. Parasitol Res 103: 459–465. doi: 10.1007/s00436-008-1007-3
[43]  Hollm-Delgado MG, Gilman RH, Bern C, Cabrera L, Sterling CR, et al. (2008) Lack of an adverse effect of Giardia intestinalis infection on the health of Peruvian children. Am J Epidemiol 168: 647–655. doi: 10.1093/aje/kwn177
[44]  Chapman CA, Wasserman MD, Gillespie TR, Speirs ML, Lawes MJ, et al. (2006) Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments? Am J Phys Anthro 131: 525–534. doi: 10.1002/ajpa.20477
[45]  Agresti A, Coull BA (1998) Approximate is better than “exact” for interval estimation of binomial proportions. Am Stat 52: 119–126. doi: 10.2307/2685469
[46]  Nei M (1987) Molecular Evolutionary Genetics. New York: Columbia University Press.
[47]  Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133