Background The blood-feeding hookworm Necator americanus infects hundreds of millions of people worldwide. In order to elucidate fundamental molecular biological aspects of this hookworm, the transcriptome of the adult stage of Necator americanus was explored using next-generation sequencing and bioinformatic analyses. Methodology/Principal Findings A total of 19,997 contigs were assembled from the sequence data; 6,771 of these contigs had known orthologues in the free-living nematode Caenorhabditis elegans, and most of them encoded proteins with WD40 repeats (10.6%), proteinase inhibitors (7.8%) or calcium-binding EF-hand proteins (6.7%). Bioinformatic analyses inferred that the C. elegans homologues are involved mainly in biological pathways linked to ribosome biogenesis (70%), oxidative phosphorylation (63%) and/or proteases (60%); most of these molecules were predicted to be involved in more than one biological pathway. Comparative analyses of the transcriptomes of N. americanus and the canine hookworm, Ancylostoma caninum, revealed qualitative and quantitative differences. For instance, proteinase inhibitors were inferred to be highly represented in the former species, whereas SCP/Tpx-1/Ag5/PR-1/Sc7 proteins ( = SCP/TAPS or Ancylostoma-secreted proteins) were predominant in the latter. In N. americanus, essential molecules were predicted using a combination of orthology mapping and functional data available for C. elegans. Further analyses allowed the prioritization of 18 predicted drug targets which did not have homologues in the human host. These candidate targets were inferred to be linked to mitochondrial (e.g., processing proteins) or amino acid metabolism (e.g., asparagine t-RNA synthetase). Conclusions This study has provided detailed insights into the transcriptome of the adult stage of N. americanus and examines similarities and differences between this species and A. caninum. Future efforts should focus on comparative transcriptomic and proteomic investigations of the other predominant human hookworm, A. duodenale, for both fundamental and applied purposes, including the prevalidation of anti-hookworm drug targets.
References
[1]
Hotez PJ (2007) Neglected diseases and poverty in “The other America”: The Greatest Health Disparity in the United States? PLoS Negl Trop Dis 1: e149. doi: 10.1371/journal.pntd.0000149
[2]
de Silva NR, Brooker S, Hotez PJ, Montresor A, Engels D, et al. (2003) Soil-transmitted helminth infections: updating the global picture. Trends Parasitol 19: 547–551. doi: 10.1016/j.pt.2003.10.002
[3]
Hotez PJ, Bethony J, Bottazzi ME, Brooker S, Diemert D, et al. (2006) New technologies for the control of human hookworm infection. Trends Parasitol 22: 327–331. doi: 10.1016/j.pt.2006.05.004
[4]
Rabelo EM, Hall RS, Loukas A, Cooper L, Hu M, et al. (2009) Improved insights into the transcriptomes of the human hookworm Necator americanus–fundamental and biotechnological implications. Biotechnol Adv 27: 122–132. doi: 10.1016/j.biotechadv.2008.10.002
[5]
Matthews BE (1985) The influence of temperature and osmotic stress on the development and eclosion of hookworm eggs. J Helminthol 59: 217–224. doi: 10.1017/S0022149X00007975
[6]
Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, et al. (2006) Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367: 1521–1532. doi: 10.1016/S0140-6736(06)68653-4
[7]
Loukas A, Bethony J, Brooker S, Hotez P (2006) Hookworm vaccines: past, present, and future. Lancet Infect Dis 6: 733–741. doi: 10.1016/S1473-3099(06)70630-2
[8]
Fujiwara RT, Can?ado GG, Freitas PA, Santiago HC, Massara CL, et al. (2009) Necator americanus infection: a possible cause of altered dendritic cell differentiation and eosinophil profile in chronically infected individuals. PLoS Negl Trop Dis 3: e399. doi: 10.1371/journal.pntd.0000399
[9]
Bungiro R, Cappello M (2004) Hookworm infection: new developments and prospects for control. Curr Opin Infect Dis 17: 421–426. doi: 10.1097/00001432-200410000-00006
Wolstenholme AJ, Fairweather I, Prichard R, von Samson-Himmelstjerna G, Sangster NC (2004) Drug resistance in veterinary helminths. Trends Parasitol 20: 469–476. doi: 10.1016/j.pt.2004.07.010
[12]
Riddle DL, Blumenthal T, Meyer BJ, Priess JR, editors. (1997) C. elegans II. Cold Spring Harbor Laboratory Press, New York, USA.
[13]
Sugimoto A (2004) High-throughput RNAi in Caenorhabditis elegans: genome-wide screens and functional genomics. Differentiation 72: 81–91. doi: 10.1111/j.1432-0436.2004.07202004.x
[14]
Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, et al. (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392: 71–75. doi: 10.1038/32160
[15]
Bürglin TR, Lobos E, Blaxter ML (1998) Caenorhabditis elegans as a model for parasitic nematodes. Int J Parasitol 28: 395–411. doi: 10.1016/S0020-7519(97)00208-7
[16]
Parkinson J, Mitreva M, Whitton C, Thomson M, Daub J, et al. (2004) A transcriptomic analysis of the phylum Nematoda. Nat Genet 36: 1259–1267. doi: 10.1038/ng1472
[17]
Nikolaou S, Gasser RB (2006) Extending from PARs in Caenorhabditis elegans to homologues in Haemonchus contortus and other parasitic nematodes. Parasitology 134: 461–482. doi: 10.1017/S0031182006001727
[18]
Campbell BE, Nagaraj SH, Hu M, Zhong W, Sternberg PW, et al. (2008) Gender-enriched transcripts in adult Haemonchus contortus – predicted functions and genetic interactions based on comparative analyses with Caenorhabditis elegans. Int J Parasitol 38: 65–83. doi: 10.1016/j.ijpara.2007.07.001
[19]
Datu BJ, Gasser RB, Nagaraj SH, Ong EK, O'Donoghue P, et al. (2008) Transcriptional changes in the hookworm, Ancylostoma caninum, during the transition from a free-living to a parasitic larva. PLoS Negl Trop Dis 2: e130. doi: 10.1371/journal.pntd.0000130
[20]
Cantacessi C, Loukas A, Campbell BE, Mulvenna J, Ong EK, et al. (2009) Exploring transcriptional conservation between Ancylostoma caninum and Haemonchus contortus by oligonucleotide microarray and bioinformatic analyses. Mol Cell Probes 23: 1–9. doi: 10.1016/j.mcp.2008.09.004
[21]
Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, et al. (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456: 53–59. doi: 10.1038/nature07517
[22]
Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, et al. (2008) Single-molecule DNA sequencing of a viral genome. Science 320: 106–109. doi: 10.1126/science.1150427
[23]
Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376–380. doi: 10.1038/nature03959
[24]
Droege M, Hill B (2008) The Genome Sequencer FLX System–longer reads, more applications, straight forward bioinformatics and more complete data sets. J Biotechnol 136: 3–10. doi: 10.1016/j.jbiotec.2008.03.021
[25]
Mitreva M, McCarter JP, Arasu P, Hawdon J, Martin J, et al. (2005) Investigating hookworm genomes by comparative analysis of two Ancylostoma species. BMC Genomics 26: 58. doi: 10.1186/1471-2164-6-58
[26]
Moser JM, Freitas T, Arasu P, Gibson G (2005) Gene expression profiles associated with the transition to parasitism in Ancylostoma caninum larvae. Mol Biochem Parasitol 143: 39–48. doi: 10.1016/j.molbiopara.2005.04.012
[27]
Abubucker S, Martin J, Yin Y, Fulton L, Yang SP, et al. (2008) The canine hookworm genome: analysis and classification of Ancylostoma caninum survey sequences. Mol Biochem Parasitol 157: 187–192. doi: 10.1016/j.molbiopara.2007.11.001
[28]
Xiao S, Zhan B, Xue J, Goud GN, Loukas A, et al. (2008) The evaluation of recombinant hookworm antigens as vaccines in hamsters (Mesocricetus auratus) challenged with human hookworm, Necator americanus. Exp Parasitol 118: 32–40. doi: 10.1016/j.exppara.2007.05.010
[29]
Mitreva M, Mardis ER (2009) Large-scale sequencing and analytical processing of ESTs. Methods Mol Biol 533: 153–187. doi: 10.1007/978-1-60327-136-3_8
[30]
Barnes WM (1994) PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc Natl Acad Sci U S A 91: 2216–2220. doi: 10.1073/pnas.91.6.2216
[31]
Ranganathan S, Menon R, Gasser RB (2009) Advanced in silico analysis of expressed sequence tag (EST) data for parasitic nematodes of major socio-economic importance–fundamental insights toward biotechnological outcomes. Biotechnol Adv 27: 439–448. doi: 10.1016/j.biotechadv.2009.03.005
[32]
Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9: 868–877. doi: 10.1101/gr.9.9.868
[33]
Daub J, Loukas A, Pritchard DI, Blaxter M (2000) A survey of genes expressed in adults of the human hookworm, Necator americanus. Parasitology 120: 171–184. doi: 10.1017/S0031182099005375
[34]
Ranjit N, Jones MK, Stenzel DJ, Gasser RB, Loukas A (2006) A survey of the intestinal transcriptomes of the hookworms, Necator americanus and Ancylostoma caninum, using tissues isolated by laser microdissection microscopy. Int J Parasitol 36: 701–710. doi: 10.1016/j.ijpara.2006.01.015
[35]
Conesa A, G?tz S, García-Gómez JM, Terol J, Talón M, et al. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–3676. doi: 10.1093/bioinformatics/bti610
[36]
Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, et al. (2009) InterPro: the integrative protein signature database. Nucleic Acids Res 37: D211–D215. doi: 10.1093/nar/gkn785
[37]
Wu J, Mao X, Cai T, Luo J, Wei L (2006) KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res 34: W720–W724. doi: 10.1093/nar/gkl167
[38]
Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Prot Eng 10: 1–6. doi: 10.1093/protein/10.1.1
[39]
Nielsen H, Krogh A (1998) Prediction of signal peptides and signal anchors by a hidden Markov model. pp. 122–130. Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology (ISMB 6), AAAI Press, Menlo Park, California.
[40]
Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340: 783–795. doi: 10.1016/j.jmb.2004.05.028
[41]
Sonnhammer ELL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. pp. 175–182. Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology, Menlo Park, CA, AAAI;.
[42]
Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: 567–580. doi: 10.1006/jmbi.2000.4315
[43]
Moller S, Croning MDR, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17: 646–653. doi: 10.1093/bioinformatics/17.7.646
[44]
Parkinson J, Blaxter M (2003) SimiTri–visualizing similarity relationships for groups of sequences. Bioinformatics 19: 390–395. doi: 10.1093/bioinformatics/btf870
[45]
Lee I, Lehner B, Crombie C, Wong W, Fraser AG, et al. (2008) A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nat Genet 40: 181–188. doi: 10.1038/ng.2007.70
[46]
Lipinski C, Lombardo F, Dominy B, Feeney P (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23: 3–25. doi: 10.1016/s0169-409x(96)00423-1
[47]
Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1: 727–730. doi: 10.1038/nrd892
Chang A, Scheer M, Grote A, Schomburg I, Schomburg D (2009) BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res 37: D588–D592. doi: 10.1093/nar/gkn820
[50]
Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, et al. (2003) Systemic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421: 231–237. doi: 10.1038/nature01278
[51]
S?nnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, et al. (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434: 462–469. doi: 10.1038/nature03353
[52]
Wolf DA, Jackson PK (1998) Cell cycle: oiling the gears of anaphase. Curr Biol 8: R636–R639. doi: 10.1016/S0960-9822(07)00410-1
[53]
Leipe DD, Koonin EV, Aravind L (2004) STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol 343: 1–28. doi: 10.1016/j.jmb.2004.08.023
[54]
Yu H (2007) Cdc20: a WD40 activator for a cell cycle degradation machine. Mol Cell 27: 3–16. doi: 10.1016/j.molcel.2007.06.009
[55]
Nagamune K, Moreno SN, Chini EN, Sibley LD (2008) Calcium regulation and signaling in apicomplexan parasites. Subcell Biochem 47: 70–81. doi: 10.1007/978-0-387-78267-6_5
[56]
Estevez AO, Cowie RH, Gardner KL, Estevez M (2006) Both insulin and calcium channel signaling are required for developmental regulation of serotonin synthesis in the chemosensory ADF neurons of Caenorhabditis elegans. Dev Biol 298: 32–44. doi: 10.1016/j.ydbio.2006.06.005
[57]
Ashton FT, Li J, Schad GA (1999) Chemo- and thermosensory neurons: structure and function in animal parasitic nematodes. Vet Parasitol 84: 297–316. doi: 10.1016/S0304-4017(99)00037-0
[58]
Williamson AL, Brindley PJ, Abbenante G, Datu BJ, Prociv P, et al. (2003) Hookworm aspartic protease, Na-APR-2, cleaves human hemoglobin and serum proteins in a host-specific fashion. J Infect Dis 187: 484–494. doi: 10.1086/367708
[59]
Eiff JA (1966) Nature of an anticoagulant from the cephalic glands of Ancylostoma caninum. J Parasitol 52: 833–843. doi: 10.2307/3276520
[60]
Milstone AM, Harrison LM, Bungiro RD, Kuzmic P, Cappello M (2000) A broad spectrum kunitz type serine protease inhibitor secreted by the hookworm Ancylostoma ceylanicum. J Biol Chem 275: 29391–29399. doi: 10.1074/jbc.M002715200
[61]
Hawdon JM, Datu B, Crowell M (2003) Molecular cloning of a novel multidomain kunitz-type proteinase inhibitor from the hookworm Ancylostoma caninum. J Parasitol 89: 402–407. doi: 10.1645/0022-3395(2003)089[0402:MCOANM]2.0.CO;2
[62]
Chu D, Bungiro RD, Ibanez M, Harrison LM, Campodonico E, et al. (2004) Molecular characterization of Ancylostoma ceylanicum Kunitz-type serine protease inhibitor: evidence for a role in hookworm-associated growth delay. Infect Immunol 72: 2214–2221. doi: 10.1128/IAI.72.4.2214-2221.2004
[63]
Costa AF, Gasser RB, Dias SR, Rabelo EM (2009) Male-enriched transcription of genes encoding ASPs and Kunitz-type protease inhibitors in Ancylostoma species. Mol Cell Probes 23: 298–303. doi: 10.1016/j.mcp.2009.07.004
[64]
Furmidge BA, Horn LA, Pritchard DI (1996) The anti-haemostatic strategies of the human hookworm Necator americanus. Parasitology 112: 81–87. doi: 10.1017/S0031182000065100
[65]
Williamson AL, Lecchi P, Turk BE, Choe Y, Hotez PJ, et al. (2004) A multi-enzyme cascade of hemoglobin proteolysis in the intestine of blood-feeding hookworms. J Biol Chem 279: 35950–35957. doi: 10.1074/jbc.M405842200
[66]
Ranjit N, Zhan B, Hamilton B, Stenzel D, Lowther J, et al. (2009) Proteolytic degradation of hemoglobin in the intestine of the human hookworm Necator americanus. J Infect Dis 199: 904–912. doi: 10.1086/597048
[67]
Ranjit N, Zhan B, Stenzel DJ, Mulvenna J, Fujiwara R, et al. (2008) A family of cathepsin B cysteine proteases expressed in the gut of the human hookworm, Necator americanus. Mol Biochem Parasitol 160: 90–99. doi: 10.1016/j.molbiopara.2008.04.008
[68]
Loukas A, Bethony JM, Williamson AL, Goud GN, Mendez S, et al. (2004) Vaccination of dogs with a recombinant cysteine protease from the intestine of canine hookworms diminishes the fecundity and growth of worms. J Infect Dis 189: 1952–1961. doi: 10.1086/386346
[69]
Mulvenna J, Hamilton B, Nagaraj SH, Smyth D, Loukas A, et al. (2009) Proteomics analysis of the excretory/secretory component of the blood-feeding stage of the hookworm, Ancylostoma caninum. Mol Cell Proteomics 8: 109–121. doi: 10.1074/mcp.M800206-MCP200
[70]
Ford L, Zhang J, Liu J, Hashmi S, Fuhrman JA, et al. (2009) Functional analysis of the cathepsin-like cysteine protease genes in adult Brugia malayi using RNA interference. PLoS Negl Trop Dis 3: e377. doi: 10.1371/journal.pntd.0000377
[71]
Kumar S, Pritchard DI (1992) The partial characterization of proteases present in the excretory/secretory products and exsheathing fluid of the infective (L3) larva of Necator americanus. Int J Parasitol 22: 563–572. doi: 10.1016/0020-7519(92)90003-4
[72]
Zhan B, Liu Y, Badamchian M, Williamson A, Feng J, et al. (2003) Molecular characterization of the Ancylostoma-secreted protein family from the adult stage of Ancylostoma caninum. Int J Parasitol 33: 897–907. doi: 10.1016/S0020-7519(03)00111-5
[73]
Hawdon JM, Jones BF, Perregaux MA, Hotez PJ (1995) Ancylostoma caninum: metalloprotease release coincides with activation of infective larvae in vitro. Exp Parasitol 80: 205–211. doi: 10.1006/expr.1995.1025
[74]
Rajan TV (1998) A hypothesis for the tissue specificity of nematode parasites. Exp Parasitol 89: 140–142. doi: 10.1006/expr.1998.4264
[75]
Clark DA, Coker R (1998) Transforming growth factor-beta (TGF-beta). Inter J Biochem Cell Biol 30: 293–298. doi: 10.1016/s1357-2725(97)00128-3
[76]
Williamson AL, Lustigman S, Oksov Y, Deumic V, Plieskatt J, et al. (2006) Ancylostoma caninum MTP-1, an astacin-like metalloprotease secreted by infective hookworm larvae, is involved in tissue migration. Infect Immun 74: 961–967. doi: 10.1128/IAI.74.2.961-967.2006
[77]
Rogers WP, Sommerville RI (1957) Physiology of exsheathment in nematodes and its relation to parasitism. Nature 179: 619–621. doi: 10.1038/179619a0
[78]
Shin H, Hirst M, Bainbridge MN, Magrini V, Mardis E, et al. (2008) Transcriptome analysis for Caenorhabditis elegans based on novel expressed sequence tags. BMC Biol 6: 30. doi: 10.1186/1741-7007-6-30
[79]
Loukas A, Constant SL, Bethony JM (2005) Immunobiology of hookworm infection. FEMS Immunol Med Microbiol 43: 115–124. doi: 10.1016/j.femsim.2004.11.006
[80]
Hawdon JM, Jones BF, Hoffman DR, Hotez PJ (1996) Cloning and characterization of Ancylostoma-secreted protein. A novel protein associated with the transition to parasitism by infective hookworm larvae. J Biol Chem 271: 6672–6678. doi: 10.1074/jbc.271.12.6672
[81]
Bethony J, Loukas A, Smout M, Brooker S, Mendez S, et al. (2005) Antibodies against a secreted protein from hookworm larvae reduce the intensity of hookworm infection in humans and vaccinated laboratory animals. FASEB J 19: 1743–1745. doi: 10.1096/fj.05-3936fje
[82]
Zhan B, Hawdon J, Qiang S, Hainan R, Huiqing Q, et al. (1999) Ancylostoma secreted protein 1 (ASP-1) homologues in human hookworms. Mol Biochem Parasitol 98: 143–149. doi: 10.1016/S0166-6851(98)00157-1
[83]
Goud GN, Zhan B, Ghosh K, Loukas A, Hawdon J, et al. (2004) Cloning, yeast expression, isolation, and vaccine testing of recombinant Ancylostoma-secreted protein (ASP)-1 and ASP-2 from Ancylostoma ceylanicum. J Infect Dis 189: 19–29. doi: 10.1086/381901
[84]
Goud GN, Bottazzi ME, Zhan B, Mendez S, Deumic V, et al. (2005) Expression of the Necator americanus hookworm larval antigen Na-ASP-2 in Pichia pastoris and purification of the recombinant protein for use in human clinical trials. Int J Parasitol 35: 303–313. doi: 10.1016/j.ijpara.2004.11.014
[85]
Asojo OA, Loukas A, Inan M, Barent R, Huang J, et al. (2005) Crystallization and preliminary X-ray analysis of Na-ASP-1, a multi-domain pathogenesis-related-1 protein from the human hookworm parasite Necator americanus. Acta Crystallogr Sect F Struct Biol Cryst Commun 61: 391–394. doi: 10.1107/s1744309105007748
[86]
Bower MA, Constant SL, Mendez S (2008) Necator americanus: the Na-ASP-2 protein secreted by the infective larvae induces neutrophil recruitment in vivo and in vitro. Exp Parasitol 118: 569–575. doi: 10.1016/j.exppara.2007.11.014
[87]
Mendez S, D' Samuel A, Antoine AD, Ahn S, Hotez P (2008) Use of the air pouch model to investigate immune responses to a hookworm vaccine containing the Na-ASP-2 protein in rats. Parasite Immunol 30: 53–56. doi: 10.1111/j.1365-3024.2007.00994.x
[88]
Moyle M, Foster DL, McGrath DE, Brown SM, Laroche Y, et al. (1994) A hookworm glycoprotein that inhibits neutrophil function is a ligand of the integrin CD11b/CD18. J Biol Chem 269: 10008–10015.
[89]
Del Valle A, Jones BF, Harrison LM, Chadderdon RC, Cappello M (2003) Isolation and molecular cloning of a secreted hookworm platelet inhibitor from adult Ancylostoma caninum. Mol Biochem Parasitol 129: 167–177. doi: 10.1016/S0166-6851(03)00121-X
[90]
Jian X, Sen L, Hui-Qin Q, Hai-Nan R, Tie-Hua L, et al. (2003) Necator americanus: maintenance through one hundred generations in golden hamsters (Mesocricetus auratus). I. Host sex-associated differences in hookworm burden and fecundity. Exp Parasitol 104: 62–66. doi: 10.1016/S0014-4894(03)00094-8
[91]
Jian X, Shu-Hua X, Hui-Qing Q, Sen L, Hotez P, et al. (2003) Necator americanus: maintenance through one hundred generations in golden hamsters (Mesocricetus auratus). II. Morphological development of the adult and its comparison with humans. Exp Parasitol 105: 192–200. doi: 10.1016/j.exppara.2003.12.016
[92]
Grad LI, Sayles LC, Lemire BD (2007) Isolation and functional analysis of mitochondria from the nematode Caenorhabditis elegans. Methods Mol Biol 372: 51–66. doi: 10.1007/978-1-59745-365-3_4
[93]
Hu M, Chilton NB, Gasser RB (2002) The mitochondrial genomes of the human hookworms, Ancylostoma duodenale and Necator americanus (Nematoda: Secernentea). Int J Parasitol 32: 145–158. doi: 10.1016/S0020-7519(01)00316-2
[94]
Hu M, Gasser RB, Abs El-Osta YG, Chilton NB (2003) Structure and organization of the mitochondrial genome of the canine heartworm, Dirofilaria immitis. Parasitology 127: 37–51. doi: 10.1017/S0031182003003275
[95]
Hu M, Zhong W, Campbell BE, Sternberg PW, Pellegrino MW, et al. (2010) Elucidating ANTs in worms using genomic and bioinformatic tools - Biotechnological prospects? Biotechnol Adv 28: 49–60. doi: 10.1016/j.biotechadv.2009.09.001
[96]
Bos DH, Mayfield C, Minchella DJ (2009) Analysis of regulatory protease sequences identified through bioinformatic data mining of the Schistosoma mansoni genome. BMC Genomics 10: 488. doi: 10.1186/1471-2164-10-488
Grantham BD, Barrett J (1988) Glutamine and asparagine synthesis in the nematodes Heligmosomoides polygyrus and Panagrellus redivivus. J Parasitol 74: 1052–1053. doi: 10.2307/3282234
[99]
Myers RF, Krusberg LR (1965) Organic substances discharged by plant-parasitic nematodes. Phytopathology 55: 429–437.
[100]
Locatelli A, Camerini E (1969) Chromato-graphic studies of amino acids released in the in-cubation media of Fasciola hepatica. Ital J Biochem 18: 376–381.
[101]
Hashimoto K, Suzuki F, Sakagami H (2009) Declined asparagine synthetase mRNA expression and enhanced sensitivity to asparaginase in HL-60 cells committed to monocytic differentiation. Anticancer Res 29: 1303–1308.
[102]
Coles GC, Jackson F, Pomroy WE, Prichard RK, von Samson-Himmelstjerna G, et al. (2006) The detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol 136: 167–185. doi: 10.1016/j.vetpar.2005.11.019
[103]
Gilleard JS, Beech RN (2007) Population genetics of anthelmintic resistance in parasitic nematodes. Parasitology 134: 1133–1147. doi: 10.1017/S0031182007000066