[1] | Howard JC (1991) Immunology. Disease and evolution. Nature 352: 565–567. doi: 10.1038/352565a0
|
[2] | Van Valen L (1974) Molecular evolution as predicted by natural selection. J Mol Evol 3: 89–101. doi: 10.1007/BF01796554
|
[3] | Ebert D (2008) Host-parasite coevolution: Insights from the Daphnia-parasite model system. Curr Opin Microbiol 11: 290–301. doi: 10.1016/j.mib.2008.05.012
|
[4] | Di Noia JM, Neuberger MS (2007) Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76: 1–22. doi: 10.1146/annurev.biochem.76.061705.090740
|
[5] | Reynaud CA, Bertocci B, Dahan A, Weill JC (1994) Formation of the chicken B-cell repertoire: ontogenesis, regulation of Ig gene rearrangement, and diversification by gene conversion. Advances in immunology 57: 353–378. doi: 10.1016/s0065-2776(08)60676-8
|
[6] | Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302: 575–581. doi: 10.1038/302575a0
|
[7] | Cannon JP, Haire RN, Rast JP, Litman GW (2004) The phylogenetic origins of the antigen-binding receptors and somatic diversification mechanisms. Immunol Rev 200: 12–22. doi: 10.1111/j.0105-2896.2004.00166.x
|
[8] | Pancer Z, Amemiya CT, Ehrhardt GR, Ceitlin J, Gartland GL, et al. (2004) Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430: 174–180. doi: 10.1038/nature02740
|
[9] | Finlay BB, McFadden G (2006) Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124: 767–782. doi: 10.1016/j.cell.2006.01.034
|
[10] | Deitsch KW, Lukehart SA, Stringer JR (2009) Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol 7: 493–503. doi: 10.1038/nrmicro2145
|
[11] | Lopez-Rubio JJ, Riviere L, Scherf A (2007) Shared epigenetic mechanisms control virulence factors in protozoan parasites. Curr Opin Microbiol 10: 560–568. doi: 10.1016/j.mib.2007.10.003
|
[12] | Medzhitov R, Janeway CA Jr (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91: 295–298. doi: 10.1016/S0092-8674(00)80412-2
|
[13] | Pancer Z (2000) Dynamic expression of multiple scavenger receptor cysteine-rich genes in coelomocytes of the purple sea urchin. Proc Natl Acad Sci U S A 97: 13156–13161. doi: 10.1073/pnas.230096397
|
[14] | Dong Y, Taylor HE, Dimopoulos G (2006) AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS biology 4: e229. doi: 10.1371/journal.pbio.0040229
|
[15] | Watson FL, Puttmann-Holgado R, Thomas F, Lamar DL, Hughes M, et al. (2005) Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309: 1874–1878. doi: 10.1126/science.1116887
|
[16] | Brites D, McTaggart S, Morris K, Anderson J, Thomas K, et al. (2008) The Dscam homologue of the crustacean Daphnia is diversified by alternative splicing like in insects. Molecular biology and evolution 25: 1429–1439. doi: 10.1093/molbev/msn087
|
[17] | Zhang SM, Adema CM, Kepler TB, Loker ES (2004) Diversification of Ig superfamily genes in an invertebrate. Science 305: 251–254. doi: 10.1126/science.1088069
|
[18] | Hauton C, Smith VJ (2007) Adaptive immunity in invertebrates: a straw house without a mechanistic foundation. Bioessays 29: 1138–1146. doi: 10.1002/bies.20650
|
[19] | Little TJ, Colegrave N, Sadd BM, Schmid-Hempel P (2008) Studying immunity at the whole organism level. Bioessays 30: 404–405; author reply 406. doi: 10.1002/bies.20738
|
[20] | Hertel LA, Stricker SA, Monroy FP, Wilson WD, Loker ES (1994) Biomphalaria glabrata hemolymph lectins: binding to bacteria, mammalian erythrocytes, and to sporocysts and rediae of Echinostoma paraensei. J Invertebr Pathol 64: 52–61. doi: 10.1006/jipa.1994.1068
|
[21] | Adema CM, Hertel LA, Miller RD, Loker ES (1997) A family of fibrinogen-related proteins that precipitates parasite-derived molecules is produced by an invertebrate after infection. Proc Natl Acad Sci U S A 94: 8691–8696. doi: 10.1073/pnas.94.16.8691
|
[22] | Zhang SM, Loker ES (2004) Representation of an immune responsive gene family encoding fibrinogen-related proteins in the freshwater mollusc Biomphalaria glabrata, an intermediate host for Schistosoma mansoni. Gene 341: 255–266. doi: 10.1016/j.gene.2004.07.003
|
[23] | Zhang SM, Nian H, Zeng Y, Dejong RJ (2008) Fibrinogen-bearing protein genes in the snail Biomphalaria glabrata: characterization of two novel genes and expression studies during ontogenesis and trematode infection. Dev Comp Immunol 32: 1119–1130. doi: 10.1016/j.dci.2008.03.001
|
[24] | Zhang SM, Zeng Y, Loker ES (2008) Expression profiling and binding properties of fibrinogen-related proteins (FREPs), plasma proteins from the schistosome snail host Biomphalaria glabrata. Innate immunity 14: 175–189. doi: 10.1177/1753425908093800
|
[25] | Hanington PC, Lun CM, Adema CM, Loker ES (2010) Time series analysis of the transcriptional responses of Biomphalaria glabrata throughout the course of intramolluscan development of Schistosoma mansoni and Echinostoma paraensei. Int J Parasitol. doi: 10.1016/j.ijpara.2009.12.005
|
[26] | Roger E, Mitta G, Mone Y, Bouchut A, Rognon A, et al. (2008) Molecular determinants of compatibility polymorphism in the Biomphalaria glabrata/Schistosoma mansoni model: New candidates identified by a global comparative proteomics approach. Mol Biochem Parasitol 157: 205–216. doi: 10.1016/j.molbiopara.2007.11.003
|
[27] | Roger E, Grunau C, Pierce RJ, Hirai H, Gourbal B, et al. (2008) Controlled Chaos of Polymorphic Mucins in a Metazoan Parasite (Schistosoma mansoni) Interacting with Its Invertebrate Host (Biomphalaria glabrata). PLoS neglected tropical diseases 2: e330. doi: 10.1371/journal.pntd.0000330
|
[28] | Theron A, Pages JR, Rognon A (1997) Schistosoma mansoni: distribution patterns of miracidia among Biomphalaria glabrata snail as related to host susceptibility and sporocyst regulatory processes. Exp Parasitol 85: 1–9. doi: 10.1006/expr.1996.4106
|
[29] | Guillou F, Roger E, Mone Y, Rognon A, Grunau C, et al. (2007) Excretory-secretory proteome of larval Schistosoma mansoni and Echinostoma caproni, two parasites of Biomphalaria glabrata. Mol Biochem Parasitol. doi: 10.1016/j.molbiopara.2007.05.009
|
[30] | Chernin E (1963) Observations on hearts explanted in vitro from the snail Australorbis glabratus. J Parasitol 49: 353–364. doi: 10.2307/3275797
|
[31] | Coustau C, Mitta G, Dissous C, Guillou F, Galinier R, et al. (2003) Schistosoma mansoni and Echinostoma caproni excretory-secretory products differentially affect gene expression in Biomphalaria glabrata embryonic cells. Parasitology 127: 533–542. doi: 10.1017/S0031182003004049
|
[32] | Vergote D, Bouchut A, Sautiere PE, Roger E, Galinier R, et al. (2005) Characterisation of proteins differentially present in the plasma of Biomphalaria glabrata susceptible or resistant to Echinostoma caproni. Int J Parasitol 35: 215–224. doi: 10.1016/j.ijpara.2004.11.006
|
[33] | Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68: 850–858. doi: 10.1021/ac950914h
|
[34] | Roger E, Gourbal B, Grunau C, Pierce RJ, Galinier R, et al. (2008) Expression analysis of highly polymorphic mucin proteins (Sm PoMuc) from the parasite Schistosoma mansoni. Mol Biochem Parasitol 157: 217–227. doi: 10.1016/j.molbiopara.2007.11.015
|
[35] | Bouchut A, Sautiere PE, Coustau C, Mitta G (2006) Compatibility in the Biomphalaria glabrata/Echinostoma caproni model: Potential involvement of proteins from hemocytes revealed by a proteomic approach. Acta Trop. doi: 10.1016/j.actatropica.2006.05.007
|
[36] | Kayser JP, Vallet JL, Cerny RL (2004) Defining parameters for homology-tolerant database searching. J Biomol Tech 15: 285–295.
|
[37] | Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599. doi: 10.1093/molbev/msm092
|
[38] | Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics (Oxford, England) 25: 1451–1452. doi: 10.1093/bioinformatics/btp187
|
[39] | Fryer SE, Bayne CJ (1996) Phagocytosis of latex beads by Biomphalaria glabrata hemocytes is modulated in a strain-specific manner by adsorbed plasma components. Dev Comp Immunol 20: 23–37. doi: 10.1016/0145-305X(95)00039-V
|
[40] | Yoshino TP, Dinguirard N, Kunert J, Hokke CH (2008) Molecular and functional characterization of a tandem-repeat galectin from the freshwater snail Biomphalaria glabrata, intermediate host of the human blood fluke Schistosoma mansoni. Gene 411: 46–58. doi: 10.1016/j.gene.2008.01.003
|
[41] | Cai P, Bu L, Wang J, Wang Z, Zhong X, et al. (2008) Molecular characterization of Schistosoma japonicum tegument protein tetraspanin-2: sequence variation and possible implications for immune evasion. Biochemical and biophysical research communications 372: 197–202. doi: 10.1016/j.bbrc.2008.05.042
|
[42] | Schramm G, Hamilton JV, Balog CI, Wuhrer M, Gronow A, et al. (2009) Molecular characterisation of kappa-5, a major antigenic glycoprotein from Schistosoma mansoni eggs. Mol Biochem Parasitol 166: 4–14. doi: 10.1016/j.molbiopara.2009.02.003
|
[43] | Gorbushin AM, Panchin YV, Iakovleva NV (2009) In search of the origin of FREPs: characterization of Aplysia californica fibrinogen-related proteins. Dev Comp Immunol 34: 465–473. doi: 10.1016/j.dci.2009.12.007
|
[44] | Wang X, Zhao Q, Christensen BM (2005) Identification and characterization of the fibrinogen-like domain of fibrinogen-related proteins in the mosquito, Anopheles gambiae, and the fruitfly, Drosophila melanogaster, genomes. BMC Genomics 6: 114. doi: 10.1186/1471-2164-6-114
|
[45] | Fan C, Zhang S, Li L, Chao Y (2008) Fibrinogen-related protein from amphioxus Branchiostoma belcheri is a multivalent pattern recognition receptor with a bacteriolytic activity. Mol Immunol 45: 3338–3346. doi: 10.1016/j.molimm.2008.04.019
|
[46] | Hertel LA, Adema CM, Loker ES (2005) Differential expression of FREP genes in two strains of Biomphalaria glabrata following exposure to the digenetic trematodes Schistosoma mansoni and Echinostoma paraensei. Dev Comp Immunol 29: 295–303. doi: 10.1016/j.dci.2004.08.003
|
[47] | Loker ES, Adema CM, Zhang SM, Kepler TB (2004) Invertebrate immune systems–not homogeneous, not simple, not well understood. Immunol Rev 198: 10–24. doi: 10.1111/j.0105-2896.2004.0117.x
|
[48] | Léonard PM, Adema CM, Zhang S-M, Loker ES (2001) Structure of two FREP genes that combine IgSF and fibrinogen domains, with comments on diversity of the FREP gene family in the snail Biomphalaria glabrata. Gene 269: 155–165. doi: 10.1016/S0378-1119(01)00444-9
|
[49] | Zhu Y, Thangamani S, Ho B, Ding JL (2005) The ancient origin of the complement system. Embo J 24: 382–394. doi: 10.1038/sj.emboj.7600533
|
[50] | Isaac L, Isenman DE (1992) Structural requirements for thioester bond formation in human complement component C3. Reassessment of the role of thioester bond integrity on the conformation of C3. J Biol Chem 267: 10062–10069.
|
[51] | Lagueux M, Perrodou E, Levashina EA, Capovilla M, Hoffmann JA (2000) Constitutive expression of a complement-like protein in toll and JAK gain-of-function mutants of Drosophila. Proc Natl Acad Sci U S A 97: 11427–11432. doi: 10.1073/pnas.97.21.11427
|
[52] | Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M, et al. (2001) Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104: 709–718. doi: 10.1016/S0092-8674(01)00267-7
|
[53] | Zhang H, Song L, Li C, Zhao J, Wang H, et al. (2007) Molecular cloning and characterization of a thioester-containing protein from Zhikong scallop Chlamys farreri. Mol Immunol 44: 3492–3500. doi: 10.1016/j.molimm.2007.03.008
|
[54] | Blandin S, Levashina EA (2004) Thioester-containing proteins and insect immunity. Mol Immunol 40: 903–908. doi: 10.1016/j.molimm.2003.10.010
|
[55] | Stroschein-Stevenson SL, Foley E, O'Farrell PH, Johnson AD (2006) Identification of Drosophila gene products required for phagocytosis of Candida albicans. PLoS biology 4: e4. doi: 10.1371/journal.pbio.0040004
|
[56] | Dodds AW, Law SK (1998) The phylogeny and evolution of the thioester bond-containing proteins C3, C4 and alpha 2-macroglobulin. Immunol Rev 166: 15–26. doi: 10.1111/j.1600-065X.1998.tb01249.x
|
[57] | Castillo MG, Goodson MS, McFall-Ngai M (2009) Identification and molecular characterization of a complement C3 molecule in a lophotrochozoan, the Hawaiian bobtail squid Euprymna scolopes. Dev Comp Immunol 33: 69–76. doi: 10.1016/j.dci.2008.07.013
|
[58] | Nikapitiya C, Oh C, Whang I, Kim CG, Lee YH, et al. (2009) Molecular characterization, gene expression analysis and biochemical properties of alpha-amylase from the disk abalone, Haliotis discus discus. Comp Biochem Physiol B Biochem Mol Biol 152: 271–281. doi: 10.1016/j.cbpb.2008.12.007
|
[59] | Matsushita H, Takenaka M, Ogawa H (2002) Porcine pancreatic alpha-amylase shows binding activity toward N-linked oligosaccharides of glycoproteins. J Biol Chem 277: 4680–4686. doi: 10.1074/jbc.M105877200
|
[60] | Flajnik M, Du Pasquier L (2008) Evolution of the immune system. In: WE P, editor. Fundamental Immunology. Philadelphia: Wolters Kluwer-Lippincot-Williams and Wilkins. pp. 56–124.
|
[61] | Pancer Z, Saha NR, Kasamatsu J, Suzuki T, Amemiya CT, et al. (2005) Variable lymphocyte receptors in hagfish. Proc Natl Acad Sci U S A 102: 9224–9229. doi: 10.1073/pnas.0503792102
|
[62] | Guo P, Hirano M, Herrin BR, Li J, Yu C, et al. (2009) Dual nature of the adaptive immune system in lampreys. Nature 459: 796–801. doi: 10.1038/nature08068
|
[63] | Pancer Z, Cooper MD (2006) The evolution of adaptive immunity. Annu Rev Immunol 24: 497–518. doi: 10.1146/annurev.immunol.24.021605.090542
|
[64] | Rairdan G, Moffett P (2007) Brothers in arms? Common and contrasting themes in pathogen perception by plant NB-LRR and animal NACHT-LRR proteins. Microbes Infect 9: 677–686. doi: 10.1016/j.micinf.2007.01.019
|
[65] | Cannon JP, Haire RN, Schnitker N, Mueller MG, Litman GW (2004) Individual protochordates have unique immune-type receptor repertoires. Curr Biol 14: R465–466. doi: 10.1016/j.cub.2004.06.009
|
[66] | Buckley KM, Smith LC (2007) Extraordinary diversity among members of the large gene family, 185/333, from the purple sea urchin, Strongylocentrotus purpuratus. BMC molecular biology 8: 68. doi: 10.1186/1471-2199-8-68
|
[67] | Perez-Sanchez R, Ramajo-Hernandez A, Ramajo-Martin V, Oleaga A (2006) Proteomic analysis of the tegument and excretory-secretory products of adult Schistosoma bovis worms. Proteomics 6: Suppl 1S226–236. doi: 10.1002/pmic.200500420
|
[68] | Berditchevski F, Odintsova E (2007) Tetraspanins as regulators of protein trafficking. Traffic (Copenhagen, Denmark) 8: 89–96. doi: 10.1111/j.1600-0854.2006.00515.x
|
[69] | Maecker HT, Todd SC, Levy S (1997) The tetraspanin superfamily: molecular facilitators. Faseb J 11: 428–442.
|
[70] | Tran MH, Pearson MS, Bethony JM, Smyth DJ, Jones MK, et al. (2006) Tetraspanins on the surface of Schistosoma mansoni are protective antigens against schistosomiasis. Nature medicine 12: 835–840. doi: 10.1038/nm1430
|
[71] | Mulvenna J, Moertel L, Jones MK, Nawaratna S, Lovas EM, et al. (2010) Exposed proteins of the Schistosoma japonicum tegument. Int J Parasitol 40: 543–554. doi: 10.1016/j.ijpara.2009.10.002
|
[72] | Wu X, Sabat G, Brown J, Zhang M, Taft A, et al. (2009) Proteomic analysis of Schistosoma mansoni proteins released during in vitro miracidium-to-sporocyst transformation. Mol Biochem Parasitol 164: 32–44. doi: 10.1016/j.molbiopara.2008.11.005
|
[73] | Fontes W, Sousa MV, Aragao JB, Morhy L (1997) Determination of the amino acid sequence of the plant cytolysin enterolobin. Archives of biochemistry and biophysics 347: 201–207. doi: 10.1006/abbi.1997.0358
|
[74] | Iacovache I, van der Goot FG, Pernot L (2008) Pore formation: an ancient yet complex form of attack. Biochim Biophys Acta 1778: 1611–1623. doi: 10.1016/j.bbamem.2008.01.026
|
[75] | Sher D, Fishman Y, Zhang M, Lebendiker M, Gaathon A, et al. (2005) Hydralysins, a new category of beta-pore-forming toxins in cnidaria. J Biol Chem 280: 22847–22855. doi: 10.1074/jbc.M503242200
|
[76] | Bouchut A, Coustau C, Gourbal B, Mitta G (2007) Compatibility in the Biomphalaria glabrata/Echinostoma caproni model: new candidate genes evidenced by a suppressive subtractive hybridization approach. Parasitology 134: 575–588. doi: 10.1017/S0031182006001673
|
[77] | Schmidt O, Soderhall K, Theopold U, Faye I (2010) Role of adhesion in arthropod immune recognition. Annual review of entomology 55: 485–504. doi: 10.1146/annurev.ento.54.110807.090618
|
[78] | Yang ZF, Ho DW, Lau CK, Lam CT, Lum CT, et al. (2005) Allograft inflammatory factor-1 (AIF-1) is crucial for the survival and pro-inflammatory activity of macrophages. International immunology 17: 1391–1397. doi: 10.1093/intimm/dxh316
|
[79] | Abrahamson M, Alvarez-Fernandez M, Nathanson CM (2003) Cystatins. Biochem Soc Symp 179–199.
|
[80] | Bayne CJ (2009) Successful parasitism of vector snail Biomphalaria glabrata by the human blood fluke (trematode) Schistosoma mansoni: a 2009 assessment. Mol Biochem Parasitol 165: 8–18. doi: 10.1016/j.molbiopara.2009.01.005
|
[81] | Brannstrom K, Sellin ME, Holmfeldt P, Brattsand M, Gullberg M (2009) The Schistosoma mansoni protein Sm16/SmSLP/SmSPO-1 assembles into a nine-subunit oligomer with potential To inhibit Toll-like receptor signaling. Infect Immun 77: 1144–1154. doi: 10.1128/IAI.01126-08
|
[82] | Volohonsky G, Steinert S, Levashina EA (2010) Focusing on complement in the antiparasitic defense of mosquitoes. Trends Parasitol 26: 1–3. doi: 10.1016/j.pt.2009.10.003
|
[83] | Obbard DJ, Callister DM, Jiggins FM, Soares DC, Yan G, et al. (2008) The evolution of TEP1, an exceptionally polymorphic immunity gene in Anopheles gambiae. BMC evolutionary biology 8: 274. doi: 10.1186/1471-2148-8-274
|
[84] | Blandin SA, Wang-Sattler R, Lamacchia M, Gagneur J, Lycett G, et al. (2009) Dissecting the genetic basis of resistance to malaria parasites in Anopheles gambiae. Science 326: 147–150. doi: 10.1126/science.1175241
|
[85] | Blandin SA, Levashina EA (2007) Phagocytosis in mosquito immune responses. Immunol Rev 219: 8–16. doi: 10.1111/j.1600-065X.2007.00553.x
|
[86] | Blandin SA, Marois E, Levashina EA (2008) Antimalarial responses in Anopheles gambiae: from a complement-like protein to a complement-like pathway. Cell host & microbe 3: 364–374. doi: 10.1016/j.chom.2008.05.007
|
[87] | van Lookeren Campagne M, Wiesmann C, Brown EJ (2007) Macrophage complement receptors and pathogen clearance. Cell Microbiol 9: 2095–2102. doi: 10.1111/j.1462-5822.2007.00981.x
|
[88] | Bender RC, Bayne CJ (1996) Purification and characterization of a tetrameric alpha-macroglobulin proteinase inhibitor from the gastropod mollusc Biomphalaria glabrata. Biochem J 316(Pt 3): 893–900.
|
[89] | Adema CM, Hanington PC, Lun C-M, Rosenberg GH, Aragon AD, et al. (2010) Differential transcriptomic responses of Biomphalaria glabrata (Gastropoda, Mollusca) to bacteria and metazoan parasites, Schistosoma mansoni and Echinostoma paraensei (Digenea, Platyhelminthes). Molecular Immunology 47: 849–860. doi: 10.1016/j.molimm.2009.10.019
|
[90] | Theron A, Coustau C (2005) Are Biomphalaria snails resistant to Schistosoma mansoni? J Helminthol 79: 187–191. doi: 10.1079/JOH2005299
|
[91] | Beaumont HJ, Gallie J, Kost C, Ferguson GC, Rainey PB (2009) Experimental evolution of bet hedging. Nature 462: 90–93. doi: 10.1038/nature08504
|