Leishmaniasis is a debilitating disease caused by the parasite Leishmania. There is extensive clinical polymorphism, including variable responsiveness to treatment. We study Leishmania donovani parasites isolated from visceral leishmaniasis patients in Nepal that responded differently to antimonial treatment due to differing intrinsic drug sensitivity of the parasites. Here, we present a proof-of-principle study in which we applied a metabolomics pipeline specifically developed for L. donovani to characterize the global metabolic differences between antimonial-sensitive and antimonial-resistant L. donovani isolates. Clones of drug-sensitive and drug-resistant parasite isolates from clinical samples were cultured in vitro and harvested for metabolomics analysis. The relative abundance of 340 metabolites was determined by ZIC-HILIC chromatography coupled to LTQ-Orbitrap mass spectrometry. Our measurements cover approximately 20% of the predicted core metabolome of Leishmania and additionally detected a large number of lipids. Drug-sensitive and drug-resistant parasites showed distinct metabolic profiles, and unsupervised clustering and principal component analysis clearly distinguished the two phenotypes. For 100 metabolites, the detected intensity differed more than three-fold between the 2 phenotypes. Many of these were in specific areas of lipid metabolism, suggesting that the membrane composition of the drug-resistant parasites is extensively modified. Untargeted metabolomics has been applied on clinical Leishmania isolates to uncover major metabolic differences between drug-sensitive and drug-resistant isolates. The identified major differences provide novel insights into the mechanisms involved in resistance to antimonial drugs, and facilitate investigations using targeted approaches to unravel the key changes mediating drug resistance.
References
[1]
Scheltema RA, Decuypere S, T'kindt R, Dujardin JC, Coombs GH, et al. (2010) The potential of metabolomics for Leishmania research in the post-genomics era. Parasitology 9: 1291–302. doi: 10.1017/S0031182009992022
[2]
Breitling R, Pitt AR, Barrett MP (2006) Precision mapping of the metabolome. Trends Biotechnol 24: 543–548. doi: 10.1016/j.tibtech.2006.10.006
[3]
Murray HW (2004) Progress in the treatment of a neglected infectious disease: visceral leishmaniasis. Expert Rev Anti Infect Ther 2: 279–292. doi: 10.1586/14787210.2.2.279
[4]
Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, et al. (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5: 873–882. doi: 10.1038/nrmicro1748
[5]
World Health Organisation Regional Office for South-East Asia (2007) WHO meeting on the guidelines and standard operating procedures for kala-azar elimination. Kolkatta, India.
[6]
Sundar S, More DK, Singh MK, Singh VP, Sharma S, et al. (2000) Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin Infect Dis 31: 1104–1107. doi: 10.1086/318121
[7]
Kumar D, Kulshrestha A, Singh R, Salotra P (2009) In vitro susceptibility of field isolates of Leishmania donovani to Miltefosine and amphotericin B: correlation with sodium antimony gluconate susceptibility and implications for treatment in areas of endemicity. Antimicrob Agents Chemother 53: 835–838. doi: 10.1128/AAC.01233-08
[8]
Alvar J, Croft S, Olliaro P (2006) Chemotherapy in the treatment and control of leishmaniasis. Adv Parasitol 61: 223–274. doi: 10.1016/S0065-308X(05)61006-8
[9]
Rijal S, Yardley V, Chappuis F, Decuypere S, Khanal B, et al. (2007) Antimonial treatment of visceral leishmaniasis: are current in vitro susceptibility assays adequate for prognosis of in vivo therapy outcome? Microbes Infect 9: 529–535. doi: 10.1016/j.micinf.2007.01.009
[10]
Tintaya KW, Ying X, Dedet JP, Rijal S, De Bolle X, et al. (2004) Antigen genes for molecular epidemiology of leishmaniasis: polymorphism of cysteine proteinase B and surface metalloprotease glycoprotein 63 in the Leishmania donovani complex. J Infect Dis 189: 1035–1043. doi: 10.1086/382049
[11]
Laurent T, Rijal S, Yardley V, Croft S, De Doncker S, et al. (2007) Epidemiological dynamics of antimonial resistance in Leishmania donovani: Genotyping reveals a polyclonal population structure among naturally-resistant clinical isolates from Nepal. Infect Genet Evol 7: 206–212. doi: 10.1016/j.meegid.2006.08.005
[12]
Van Meirvenne N, Janssens PG, Magnus E, Lumsden WH, Herbert WJ (1975) Antigenic variation in syringe passaged populations of Trypanosoma (Trypanozoon) brucei. II. Comparative studies on two antigenic-type collections. Ann Soc Belg Med Trop 55: 25–30.
[13]
Mottram JC, Robertson CD, Coombs GH, Barry JD (1992) A developmentally regulated cysteine proteinase gene of Leishmania mexicana. Mol Microbiol 6: 1925–1932. doi: 10.1111/j.1365-2958.1992.tb01365.x
[14]
Kamleh A, Barrett MP, Wildridge D, Burchmore RJ, Scheltema RA, et al. (2008) Metabolomic profiling using Orbitrap Fourier transform mass spectrometry with hydrophilic interaction chromatography: a method with wide applicability to analysis of biomolecules. Rapid Commun Mass Spectrom 22: 1912–1918. doi: 10.1002/rcm.3564
[15]
Kamleh MA, Hobani Y, Dow JA, Zheng L, Watson DG (2009) Towards a platform for the metabonomic profiling of different strains of Drosophila melanogaster using liquid chromatography-Fourier transform mass spectrometry. FEBS J 276: 6798–6809. doi: 10.1111/j.1742-4658.2009.07397.x
[16]
Kamleh MA, Dow JA, Watson DG (2009) Applications of mass spectrometry in metabolomic studies of animal model and invertebrate systems. Brief Funct Genomic Proteomic 8: 28–48. doi: 10.1093/bfgp/eln052
[17]
Scheltema RA, Kamleh A, Wildridge D, Ebikeme C, Watson DG, et al. (2008) Increasing the mass accuracy of high-resolution LC-MS data using background ions: a case study on the LTQ-Orbitrap. Proteomics 8: 4647–4656. doi: 10.1002/pmic.200800314
[18]
Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, et al. (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4: 2010–2021. doi: 10.1074/mcp.T500030-MCP200
[19]
Christin C, Smilde AK, Hoefsloot HC, Suits F, Bischoff R, et al. (2008) Optimized time alignment algorithm for LC-MS data: correlation optimized warping using component detection algorithm-selected mass chromatograms. Anal Chem 80: 7012–7021. doi: 10.1021/ac800920h
[20]
Windig W (2005) The use of the Durbin-Watson criterion for noise and background reduction of complex liquid chromatography/mass spectrometry data and a new algorithm to determine sample differences. Chemometr Intell Lab Syst 77: 206–214. doi: 10.1016/j.chemolab.2004.10.008
[21]
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 7: RESEARCH0034. doi: 10.1186/gb-2002-3-7-research0034
[22]
Shah VP, Midha KK, Findlay JW, Hill HM, Hulse JD, et al. (2000) Bioanalytical method validation—a revisit with a decade of progress. Pharm Res 17: 1551–1557. doi: 10.1023/A:1007669411738
[23]
Scheltema RA, Decuypere S, Dujardin JC, Watson DG, Jansen RC, et al. (2009) Simple data-reduction method for high-resolution LC-MS data in metabolomics. Bioanalysis 1: 1551–1557. doi: 10.4155/bio.09.146
[24]
Doyle MA, MacRae JI, De Souza DP, Saunders EC, McConville MJ, et al. (2009) LeishCyc: a biochemical pathways database for Leishmania major. BMC Syst Biol 3: 57. doi: 10.1186/1752-0509-3-57
[25]
Fahy E, Sud M, Cotter D, Subramaniam S (2007) LIPID MAPS online tools for lipid research. Nucleic Acids Res 35: W606–W612. doi: 10.1093/nar/gkm324
[26]
Keller BO, Sui J, Young AB, Whittal RM (2008) Interferences and contaminants encountered in modern mass spectrometry. Anal Chim Acta 627: 71–81. doi: 10.1016/j.aca.2008.04.043
[27]
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, et al. (1999) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 27: 29–34. doi: 10.1093/nar/27.1.29
[28]
Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, et al. (2007) HMDB: the Human Metabolome Database. Nucleic Acids Res 35: D521–D526. doi: 10.1093/nar/gkl923
[29]
Scalbert A, Brennan L, Fiehn O, Hankemeier T, Kristal BS, et al. (2009) Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics 5: 435–458. doi: 10.1007/s11306-009-0168-0
[30]
Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95: 14863–14868. doi: 10.1073/pnas.95.25.14863
[31]
Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6: 469–479. doi: 10.1021/pr060594q
[32]
Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, et al. (2006) RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22: 2825–2827. doi: 10.1093/bioinformatics/btl476
[33]
Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573: 83–92. doi: 10.1016/j.febslet.2004.07.055
[34]
Breitling R, Herzyk P (2005) Rank-based methods as a non-parametric alternative of the T-statistic for the analysis of biological microarray data. J Bioinform Comput Biol 3: 1171–1189. doi: 10.1142/S0219720005001442
[35]
Alam MZ, Kuhls K, Schweynoch C, Sundar S, Rijal S, et al. (2009) Multilocus microsatellite typing (MLMT) reveals genetic homogeneity of Leishmania donovani strains in the Indian subcontinent. Infect Genet Evol 9: 24–31. doi: 10.1016/j.meegid.2008.09.005
[36]
Chavali AK, Whittemore JD, Eddy JA, Williams KT, Papin JA (2008) Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol Syst Biol 4: 177. doi: 10.1038/msb.2008.15
[37]
Atherton HJ, Bailey NJ, Zhang W, Taylor J, Major H, et al. (2006) A combined 1H-NMR spectroscopy- and mass spectrometry-based metabolomic study of the PPAR-alpha null mutant mouse defines profound systemic changes in metabolism linked to the metabolic syndrome. Physiol Genomics 27: 178–186. doi: 10.1152/physiolgenomics.00060.2006
[38]
Dunn WB (2008) Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Phys Biol 5: 011001. doi: 10.1088/1478-3975/5/1/011001
[39]
Maltezou HC (2010) Drug resistance in visceral leishmaniasis. J Biomed Biotechnol 2010: 617521. 617521. doi: 10.1155/2010/617521
[40]
Zhang K, Pompey JM, Hsu FF, Key P, Bandhuvula P, et al. (2007) Redirection of sphingolipid metabolism toward de novo synthesis of ethanolamine in Leishmania. EMBO J 26: 1094–1104. doi: 10.1038/sj.emboj.7601565
[41]
Zhang K, Beverley SM (2010) Phospholipid and sphingolipid metabolism in Leishmania. Mol Biochem Parasitol 170: 55–64. doi: 10.1016/j.molbiopara.2009.12.004
HsuChen CC, Feingold DS (1973) Polyene antibiotic action on lecithin liposomes: effect of cholesterol and fatty acyl chains. Biochem Biophys Res Commun 51: 972–978. doi: 10.1016/0006-291X(73)90022-3
[45]
Mbongo N, Loiseau PM, Billion MA, Robert-Gero M (1998) Mechanism of amphotericin B resistance in Leishmania donovani promastigotes. Antimicrob Agents Chemother 42: 352–357.
[46]
Barratt G, Saint-Pierre-Chazalet M, Loiseau PM (2009) Cellular transport and lipid interactions of miltefosine. Curr Drug Metab 10: 247–255. doi: 10.2174/138920009787846332
[47]
Cauchetier E, Loiseau PM, Lehman J, Rivollet D, Fleury J, et al. (2002) Characterisation of atovaquone resistance in Leishmania infantum promastigotes. Int J Parasitol 32: 1043–1051. doi: 10.1016/S0020-7519(02)00065-6
[48]
Basselin M, Robert-Gero M (1998) Alterations in membrane fluidity, lipid metabolism, mitochondrial activity, and lipophosphoglycan expression in pentamidine-resistant Leishmania. Parasitol Res 84: 78–83. doi: 10.1007/s004360050361
[49]
Basselin M, Lawrence F, Robert-Gero M (1997) Altered transport properties of pentamidine-resistant Leishmania donovani and L. amazonensis promastigotes. Parasitol Res 83: 413–418. doi: 10.1007/s004360050274
[50]
Naderer T, McConville MJ (2008) The Leishmania-macrophage interaction: a metabolic perspective. Cell Microbiol 10: 301–308. doi: 10.1111/j.1462-5822.2007.01096.x
[51]
Opperdoes FR, Coombs GH (2007) Metabolism of Leishmania: proven and predicted. Trends Parasitol 23: 149–158. doi: 10.1016/j.pt.2007.02.004
[52]
de Koning HP, Bridges DJ, Burchmore RJ (2005) Purine and pyrimidine transport in pathogenic protozoa: from biology to therapy. FEMS Microbiol Rev 29: 987–1020. doi: 10.1016/j.femsre.2005.03.004
[53]
Basinger MA, Jones MM (1981) Structural requirements for chelate antidotal efficacy in acute antimony(III) intoxication. Res Commun Chem Pathol Pharmacol 32: 355–363.
[54]
Bern C, Adler-Moore J, Berenguer J, Boelaert M, den Boer M, et al. (2006) Liposomal amphotericin B for the treatment of visceral leishmaniasis. Clin Infect Dis 43: 917–924. doi: 10.1086/507530