Background Because of the development of resistance in trypanosomes to trypanocidal drugs, the livelihood of millions of livestock keepers in sub-Saharan Africa is threatened now more than ever. The existing compounds have become virtually useless and pharmaceutical companies are not keen on investing in the development of new trypanocides. We may have found a breakthrough in the treatment of resistant trypanosomal infections, through the combination of the trypanocide isometamidium chloride (ISM) with two affordable veterinary antibiotics. Methodology/Principal Findings In a first experiment, groups of mice were inoculated with Trypanosoma congolense strains resistant to ISM and either left untreated or treated with (i) tetracycline, (ii) ISM or (iii) the combination of the antibiotic and the trypanocide. Survival analysis showed that there was a significant effect of treatment and resistance to treatment on the survival time. The groups treated with ISM (with or without antibiotic) survived significantly longer than the groups that were not treated with ISM (P<0.01). The group treated with the combination trypanocide/antibiotic survived significantly longer than the group treated with ISM (P<0.01). In a second experiment, groups of cattle were inoculated with the same resistant trypanosome strain and treated with (i) ISM, (ii) ISM associated with oxytetracycline or (iii) ISM associated with enrofloxacine. All animals treated with ISM became parasitaemic. In the groups treated with ISM-oxytetracycline and ISM-enrofloxacine, 50% of the animals were cured. Animals from the groups treated with a combination trypanocide/antibiotic presented a significantly longer prepatent period than animals treated with ISM (p<0.001). The impact of the disease on the haematocrit was low in all ISM treated groups. Yet, it was lower in the groups treated with the combination trypanocide/antibiotic (p<0.01). Conclusions/Significance After optimization of the administration protocol, this new therapeutic combination could constitute a promising treatment for livestock infected with drug resistant T. congolense.
References
[1]
Kabayo JP (2002) Aiming to eliminate tsetse from Africa. Trends Parasitol 18: 473–475. doi: 10.1016/S1471-4922(02)02371-1
[2]
Van den Bossche P, Coetzer JAW (2008) Climate change and animal health in Africa. Revue Scientifique et Technique-Office International des Epizooties 27: 551–562.
[3]
Delespaux V, Geysen D, Van den Bossche P, Geerts S (2008) Molecular tools for the rapid detection of drug resistance in animal trypanosomes. Trends Parasitol 24: 236–242. doi: 10.1016/j.pt.2008.02.006
[4]
Mamoudou A, Delespaux V, Chepnda V, Hachimou Z, Andrikaye JP, et al. (2008) Assessment of the occurrence of trypanocidal drug resistance in trypanosomes of naturally infected cattle in the Adamaoua region of Cameroon using the standard mouse test and molecular tools. Acta Trop 106: 115–118. doi: 10.1016/j.actatropica.2008.02.003
[5]
Delespaux V, Dinka H, Masumu J, Van den Bossche P, Geerts S (2008) Five fold increase in the proportion of diminazene aceturate resistant Trypanosoma congolense isolates over a seven years period in Eastern Zambia. Drug Resist Update 11: 205–209. doi: 10.1016/j.drup.2008.10.002
[6]
Knorre DA, Krivonosova TN, Markova OV, Severin FF (2009) Amiodarone inhibits multiple drug resistance in yeast Saccharomyces cerevisiae. Arch Microbiol 191: 675–679. doi: 10.1007/s00203-009-0493-8
[7]
Bhattacharjee AK, Kyle DE, Vennerstrom JL (2001) Structural analysis of chloroquine resistance reversal by imipramine analogs. Antimicrob Agents Chemother 45: 2655–2657. doi: 10.1128/AAC.45.9.2655-2657.2001
[8]
Masseno V, Muriithi S, Nzila A (2009) In vitro chemosensitization of Plasmodium falciparum to antimalarials by Verapamil and Probenecid. Antimicrob Agents Chemother 53: 3131–3134. doi: 10.1128/AAC.01689-08
[9]
Tao LY, Liang YJ, Wang F, Chen LM, Yan YY, et al. (2009) Cediranib (recentin, AZD2171) reverses ABCB1-and ABCC1-mediated multidrug resistance by inhibition of their transport function. Cancer Chemother Pharmacol 64: 961–969. doi: 10.1007/s00280-009-0949-1
[10]
Wong ILK, Chan KF, Zhao YZ, Chan TH, Chow LMC (2009) Quinacrine and a novel apigenin dimer can synergistically increase the pentamidine susceptibility of the protozoan parasite Leishmania. J Antimicrob Chemother 63: 1179–1190. doi: 10.1093/jac/dkp130
[11]
Mazurkiewicz P, Driessen AJM, Konings WN (2005) What do proton motive force driven multidrug resistance transporters have in common? Curr Issues Mol Biol 7: 7–21.
[12]
Olila D, McDermott JJ, Eisler MC, Mitema ES, Patzelt RJ, et al. (2002) Drug sensitivity of trypanosome populations from cattle in a peri-urban dairy production system in Uganda. Acta Trop 84: 19–30. doi: 10.1016/S0001-706X(02)00137-7
[13]
Hirumi H, Hirumi K (1984) Continuous cultivation of animal infective bloodstream forms of an East-African Trypanosoma congolense stock. Ann Trop Med Parasitol 78: 327–330.
[14]
Helm JR, Hertz-Fowler C, Aslett M, Berriman M, Sanders M, et al. (2009) Analysis of expressed sequence tags from the four main developmental stages of Trypanosoma congolense. Mol Biochem Parasitol 168: 34–42. doi: 10.1016/j.molbiopara.2009.06.004
[15]
Coustou V, Guegan F, Plazolles N, Baltz T (2010) Complete in vitro life cycle of Trypanosoma congolense: development of genetic tools. PLoS Negl Trop Dis 4: e618. doi: 10.1371/journal.pntd.0000618
[16]
Li XZ, Ma D, Livermore DM, Nikaido H (1994) Role of efflux pump(s) in intrinsic resistance of pseudomonas aeruginosa - Active efflux as a contributing factor to beta-lactam resistance. Antimicrob Agents Chemother 38: 1742–1752. doi: 10.1128/AAC.38.8.1742
[17]
Pages JM, Lavigne JP, Leflon-Guibout V, Marcon E, Bert F, et al. (2009) Efflux pump, the masked side of beta-lactam resistance in Klebsiella pneumoniae clinical isolates. PLoS ONE 4: doi: 10.1371/journal.pone.0004817
[18]
Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245: 195–203. doi: 10.1016/j.femsle.2005.02.034
[19]
Bailey AM, Paulsen IT, Piddock LJV (2008) RamA confers multidrug resistance in Salmonella enterica via increased expression of acrB, which is inhibited by chlorpromazine. Antimicrob Agents Chemother 52: 3604–3611. doi: 10.1128/AAC.00661-08
[20]
Usui M, Uchiyama M, Iwanaka M, Nagai H, Yamamoto Y, et al. (2009) Intracellular concentrations of enrofloxacin in quinolone-resistant Salmonella enterica subspecies enterica serovar Choleraesuis. Int J Antimicrob Agents 34: 592–595. doi: 10.1016/j.ijantimicag.2009.07.009
[21]
Peregrine AS, Gray MA, Moloo SK (1997) Cross-resistance associated with development of resistance to isometamidium in a clone of Trypanosoma congolense. Antimicrob Agents Chemother 41: 1604–1606.
[22]
Eisler MC, Brandt J, Bauer B, Clausen PH, Delespaux V, et al. (2001) Standardised tests in mice and cattle for the detection of drug resistance in tsetse-transmitted trypanosomes of African domestic cattle. Vet Parasitol 97: 171–182. doi: 10.1016/S0304-4017(01)00415-0
[23]
Herbert WJ, Lumsden WHR (1976) Trypanosoma brucei: A rapid “matching” method for estimating the host's parasitaemia. Exp Parasitol 40: 427–431. doi: 10.1016/0014-4894(76)90110-7
[24]
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. New York: Cold Spring Arbor.
[25]
Geysen D, Delespaux V, Geerts S (2003) PCR-RFLP using Ssu-rDNA amplification as an easy method for species-specific diagnosis of Trypanosoma species in cattle. Vet Parasitol 110: 171–180. doi: 10.1016/S0304-4017(02)00313-8
[26]
Delespaux V, Ayral F, Geysen D, Geerts S (2003) PCR-RFLP using Ssu-rDNA amplification: applicability for the diagnosis of mixed infections with different trypanosome species in cattle. Vet Parasitol 117: 185–193. doi: 10.1016/j.vetpar.2003.08.004
[27]
Ancelle T, Paugam A, Bourlioux F, Merad A, Vigier JP (1997) Detection of trypanosomes in blood by the Quantitative Buffy Coat (QBC) technique: experimental evaluation. Med Trop (Mars) 57: 245–248.
[28]
Geerts S, Holmes PH, Diall O, Eisler MC (2001) African bovine trypanosomiasis: the problem of drug resistance. Trends Parasitol 17: 25–28. doi: 10.1016/S1471-4922(00)01827-4
[29]
Delespaux V, de Koning HP (2007) Drugs and drug resistance in African trypanosomiasis. Drug Resist Update 10: 30–50. doi: 10.1016/j.drup.2007.02.004
[30]
Vale GA (2009) Prospects for controlling trypanosomosis. Onderstepoort J Vet Res 76: 41–45. doi: 10.4102/ojvr.v76i1.62
[31]
Shaw PMA (2004) Economics of African trypanosomiasis. In: Maudlin I, Holmes PH, Miles MA, editors. The Trypanosomiasis. Wallingford, UK: CABI Publishing. pp. 369–402.
[32]
McDermott J, Woitag T, Sidibe I, Bauer B, Diarra B, et al. (2003) Field studies of drug-resistant cattle trypanosomes in Kenedougou Province, Burkina Faso. Acta Trop 86: 93–103. doi: 10.1016/S0001-706X(03)00019-6
[33]
Sones K (2001) Pharmaceutical companies: partners or enemies? ICPTV Newsletter 3: 19–21.
[34]
Markham PN (1999) Inhibition of the emergence of ciprofloxacin resistance in Streptococcus pneumoniae by the multidrug efflux inhibitor reserpine. Antimicrob Agents Chemother 43: 988–989.
[35]
Mullin S, Mani N, Grossman TH (2004) Inhibition of antibiotic efflux in bacteria by the novel multidrug resistance inhibitors biricodar (VX-710) and timcodar (VX-853). Antimicrob Agents Chemother 48: 4171–4176. doi: 10.1128/AAC.48.11.4171-4176.2004
[36]
Sangwan PL, Koul JL, Koul S, Reddy MV, Thota N, et al. (2008) Piperine analogs as potent Staphylococcus aureus NorA efflux pump inhibitors. Bioorgan Med Chem 16: 9847–9857. doi: 10.1016/j.bmc.2008.09.042