Background Salmonella enterica serotype Paratyphi A is a human-restricted cause of paratyphoid fever, accounting for up to a fifth of all cases of enteric fever in Asia. Methodology/Principal Findings In this work, we applied an RNA analysis method, Selective Capture of Transcribed Sequences (SCOTS), and cDNA hybridization-microarray technology to identify S. Paratyphi A transcripts expressed by bacteria in the blood of three patients in Bangladesh. In total, we detected 1,798 S. Paratyphi A mRNAs expressed in the blood of infected humans (43.9% of the ORFeome). Of these, we identified 868 in at least two patients, and 315 in all three patients. S. Paratyphi A transcripts identified in at least two patients encode proteins involved in energy metabolism, nutrient and iron acquisition, vitamin biosynthesis, stress responses, oxidative stress resistance, and pathogenesis. A number of detected transcripts are expressed from PhoP and SlyA-regulated genes associated with intra-macrophage survival, genes contained within Salmonella Pathogenicity Islands (SPIs) 1–4, 6, 10, 13, and 16, as well as RpoS-regulated genes. The largest category of identified transcripts is that of encoding proteins with unknown function. When comparing levels of bacterial mRNA using in vivo samples collected from infected patients to samples from in vitro grown organisms, we found significant differences for 347, 391, and 456 S. Paratyphi A transcripts in each of three individual patients (approximately 9.7% of the ORFeome). Of these, expression of 194 transcripts (4.7% of ORFs) was concordant in two or more patients, and 41 in all patients. Genes encoding these transcripts are contained within SPI-1, 3, 6 and 10, PhoP-regulated genes, involved in energy metabolism, nutrient acquisition, drug resistance, or uncharacterized genes. Using quantitative RT-PCR, we confirmed increased gene expression in vivo for a subset of these genes. Conclusion/Significance To our knowledge, we describe the first microarray-based transcriptional analysis of a pathogen in the blood of naturally infected humans.
References
[1]
Fangtham M, Wilde H (2008) Emergence of Salmonella paratyphi A as a major cause of enteric fever: need for early detection, preventive measures, and effective vaccines. J Travel Med 15: 344–350. doi: 10.1111/j.1708-8305.2008.00237.x
[2]
Crump JA, Luby SP, Mintz ED (2004) The global burden of typhoid fever. Bull World Health Organ 82: 346–353.
[3]
Maskey AP, Day JN, Phung QT, Thwaites GE, Campbell JI, et al. (2006) Salmonella enterica serovar Paratyphi A and S. enterica serovar Typhi cause indistinguishable clinical syndromes in Kathmandu, Nepal. Clin Infect Dis 42: 1247–1253. doi: 10.1086/503033
[4]
Gupta SK, Medalla F, Omondi MW, Whichard JM, Fields PI, et al. (2008) Laboratory-based surveillance of paratyphoid fever in the United States: travel and antimicrobial resistance. Clin Infect Dis 46: 1656–1663. doi: 10.1086/587894
[5]
Kumar S, Rizvi M, Berry N (2008) Rising prevalence of enteric fever due to multidrug-resistant Salmonella: an epidemiological study. J Med Microbiol 57: 1247–1250. doi: 10.1099/jmm.0.2008/001719-0
[6]
Ochiai RL, Wang X, von Seidlein L, Yang J, Bhutta ZA, et al. (2005) Salmonella paratyphi A rates, Asia. Emerg Infect Dis 11: 1764–1766. doi: 10.3201/eid1111.050168
[7]
Simanjuntak CH, Paleologo FP, Punjabi NH, Darmowigoto R, Soeprawoto , et al. (1991) Oral immunisation against typhoid fever in Indonesia with Ty21a vaccine. Lancet 338: 1055–1059. doi: 10.1016/0140-6736(91)91910-M
[8]
Levine MM, Ferreccio C, Black RE, Lagos R, San Martin O, et al. (2007) Ty21a live oral typhoid vaccine and prevention of paratyphoid fever caused by Salmonella enterica Serovar Paratyphi B. Clin Infect Dis 45: Suppl 1S24–8. doi: 10.1086/518141
[9]
Wain J, Diep TS, Ho VA, Walsh AM, Nguyen TT, et al. (1998) Quantitation of bacteria in blood of typhoid fever patients and relationship between counts and clinical features, transmissibility, and antibiotic resistance. J Clin Microbiol 36: 1683–1687.
[10]
Butler T, Bell WR, Levin J, Linh NN, Arnold K (1978) Typhoid fever. Studies of blood coagulation, bacteremia, and endotoxemia. Arch Intern Med 138: 407–410. doi: 10.1001/archinte.138.3.407
[11]
Massi MN, Shirakawa T, Gotoh A, Bishnu A, Hatta M, et al. (2005) Quantitative detection of Salmonella enterica serovar Typhi from blood of suspected typhoid fever patients by real-time PCR. Int J Med Microbiol 295: 117–120. doi: 10.1016/j.ijmm.2005.01.003
[12]
McClelland M, Sanderson KE, Clifton SW, Latreille P, Porwollik S, et al. (2004) Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet 36: 1268–1274. doi: 10.1038/ng1470
[13]
Faucher SP, Porwollik S, Dozois CM, McClelland M, Daigle F (2006) Transcriptome of Salmonella enterica serovar Typhi within macrophages revealed through the selective capture of transcribed sequences. Proc Natl Acad Sci U S A 103: 1906–1911. doi: 10.1073/pnas.0509183103
[14]
Faucher SP, Curtiss R 3rd, Daigle F (2005) Selective capture of Salmonella enterica serovar Typhi genes expressed in macrophages that are absent from the Salmonella enterica serovar Typhimurium genome. Infect Immun 73: 5217–5221. doi: 10.1128/IAI.73.8.5217-5221.2005
[15]
Shi L, Adkins JN, Coleman JR, Schepmoes AA, Dohnkova A, et al. (2006) Proteomic analysis of Salmonella enterica serovar Typhimurium isolated from RAW 264.7 macrophages: identification of a novel protein that contributes to the replication of serovar Typhimurium inside macrophages. J Biol Chem 281: 29131–29140. doi: 10.1074/jbc.M604640200
[16]
Daigle F, Graham JE, Curtiss R 3rd (2001) Identification of Salmonella typhi genes expressed within macrophages by selective capture of transcribed sequences (SCOTS). Mol Microbiol 41: 1211–1222. doi: 10.1046/j.1365-2958.2001.02593.x
[17]
Ansong C, Yoon H, Norbeck AD, Gustin JK, McDermott JE, et al. (2008) Proteomics analysis of the causative agent of typhoid fever. J Proteome Res 7: 546–557. doi: 10.1021/pr070434u
[18]
Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JC (2003) Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47: 103–118. doi: 10.1046/j.1365-2958.2003.03313.x
[19]
Hautefort I, Thompson A, Eriksson-Ygberg S, Parker ML, Lucchini S, et al. (2008) During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cell Microbiol 10: 958–984. doi: 10.1111/j.1462-5822.2007.01099.x
[20]
Monsieurs P, De Keersmaecker S, Navarre WW, Bader MW, De Smet F, et al. (2005) Comparison of the PhoPQ regulon in Escherichia coli and Salmonella typhimurium. J Mol Evol 60: 462–474. doi: 10.1007/s00239-004-0212-7
[21]
Adkins JN, Mottaz HM, Norbeck AD, Gustin JK, Rue J, et al. (2006) Analysis of the Salmonella typhimurium proteome through environmental response toward infectious conditions. Mol Cell Proteomics 5: 1450–1461. doi: 10.1074/mcp.M600139-MCP200
[22]
Daigle F, Hou JY, Clark-Curtiss JE (2002) Microbial gene expression elucidated by selective capture of transcribed sequences (SCOTS). Methods Enzymol 358: 108–122. doi: 10.1016/s0076-6879(02)58083-6
[23]
Graham JE, Clark-Curtiss JE (1999) Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci U S A 96: 11554–11559. doi: 10.1073/pnas.96.20.11554
[24]
Bauer ME, Fortney KR, Harrison A, Janowicz DM, Munson RS Jr, et al. (2008) Identification of Haemophilus ducreyi genes expressed during human infection. Microbiology 154: 1152–1160. doi: 10.1099/mic.0.2007/013953-0
[25]
Graham JE, Peek RM Jr, Krishna U, Cover TL (2002) Global analysis of Helicobacter pylori gene expression in human gastric mucosa. Gastroenterology 123: 1637–1648. doi: 10.1053/gast.2002.36589
[26]
Talawadekar NN, Vadher PJ, Antani DU, Kale VV, Kamat SA (1989) Chloramphenicol resistant Salmonella species isolated between 1978 and 1987. J Postgrad Med 35: 79–82.
[27]
Froussard P (1992) A random-PCR method (rPCR) to construct whole cDNA library from low amounts of RNA. Nucleic Acids Res 20: 2900. doi: 10.1093/nar/20.11.2900
[28]
Dziejman M, Balon E, Boyd D, Fraser CM, Heidelberg JF, et al. (2002) Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci U S A 99: 1556–1561. doi: 10.1073/pnas.042667999
[29]
Larocque RC, Harris JB, Dziejman M, Li X, Khan AI, et al. (2005) Transcriptional profiling of Vibrio cholerae recovered directly from patient specimens during early and late stages of human infection. Infect Immun 73: 4488–4493. doi: 10.1128/IAI.73.8.4488-4493.2005
[30]
Rollins SM, Peppercorn A, Young JS, Drysdale M, Baresch A, et al. (2008) Application of in vivo induced antigen technology (IVIAT) to Bacillus anthracis. PLoS One 3: e1824. doi: 10.1371/journal.pone.0001824
[31]
Sabbagh SC, Forest CG, Lepage C, Leclerc JM, Daigle F (2010) So similar, yet so different: uncovering distinctive features in the genomes of Salmonella enterica serovars Typhimurium and Typhi. FEMS Microbiol Lett 305: 1–13. doi: 10.1111/j.1574-6968.2010.01904.x
[32]
Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, et al. (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413: 848–852. doi: 10.1038/35101607
[33]
Vernikos GS, Parkhill J (2006) Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22: 2196–2203. doi: 10.1093/bioinformatics/btl369
[34]
McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, et al. (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413: 852–856. doi: 10.1038/35101614
[35]
Groisman EA (2001) The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183: 1835–1842. doi: 10.1128/JB.183.6.1835-1842.2001
[36]
Garcia Vescovi E, Soncini FC, Groisman EA (1996) Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84: 165–174. doi: 10.1016/S0092-8674(00)81003-X
[37]
Navarre WW, Halsey TA, Walthers D, Frye J, McClelland M, et al. (2005) Co-regulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ. Mol Microbiol 56: 492–508. doi: 10.1111/j.1365-2958.2005.04553.x
[38]
Galan JE (1999) Interaction of Salmonella with host cells through the centisome 63 type III secretion system. Curr Opin Microbiol 2: 46–50. doi: 10.1016/S1369-5274(99)80008-3
[39]
Fass E, Groisman EA (2009) Control of Salmonella pathogenicity island-2 gene expression. Curr Opin Microbiol 12: 199–204. doi: 10.1016/j.mib.2009.01.004
[40]
Charles RC, Harris JB, Chase MR, Lebrun LM, Sheikh A, et al. (2009) Comparative proteomic analysis of the PhoP regulon in Salmonella enterica serovar Typhi versus Typhimurium. PLoS One 4: e6994. doi: 10.1371/journal.pone.0006994
[41]
Dorsey CW, Laarakker MC, Humphries AD, Weening EH, Baumler AJ (2005) Salmonella enterica serotype Typhimurium MisL is an intestinal colonization factor that binds fibronectin. Mol Microbiol 57: 196–211. doi: 10.1111/j.1365-2958.2005.04666.x
[42]
Gerlach RG, Claudio N, Rohde M, Jackel D, Wagner C, et al. (2008) Cooperation of Salmonella pathogenicity islands 1 and 4 is required to breach epithelial barriers. Cell Microbiol 10: 2364–2376. doi: 10.1111/j.1462-5822.2008.01218.x
[43]
Klumpp J, Fuchs TM (2007) Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. Microbiology 153: 1207–1220. doi: 10.1099/mic.0. 2006/004747-0
[44]
Carnell SC, Bowen A, Morgan E, Maskell DJ, Wallis TS, et al. (2007) Role in virulence and protective efficacy in pigs of Salmonella enterica serovar Typhimurium secreted components identified by signature-tagged mutagenesis. Microbiology 153: 1940–1952. doi: 10.1099/mic.0.2006/006726-0
[45]
Saroj SD, Shashidhar R, Karani M, Bandekar JR (2008) Distribution of Salmonella pathogenicity island (SPI)-8 and SPI-10 among different serotypes of Salmonella. J Med Microbiol 57: 424–427. doi: 10.1099/jmm.0.47630-0
[46]
Watson PR, Paulin SM, Bland AP, Libby SJ, Jones PW, et al. (1999) Differential regulation of enteric and systemic salmonellosis by slyA. Infect Immun 67: 4950–4954.
[47]
Fang FC, Libby SJ, Buchmeier NA, Loewen PC, Switala J, et al. (1992) The alternative sigma Factor katF (rpoS) regulates Salmonella virulence. Proc Natl Acad Sci U S A 89: 11978–11982. doi: 10.1073/pnas.89.24.11978
[48]
Ibanez-Ruiz M, Robbe-Saule V, Hermant D, Labrude S, Norel F (2000) Identification of rpoS (Sigma(S))-regulated genes in Salmonella enterica serovar Typhimurium. J Bacteriol 182: 5749–5756. doi: 10.1128/JB.182.20.5749-5756.2000
[49]
Lacour S, Landini P (2004) SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identification of their promoter sequences. J Bacteriol 186: 7186–7195. doi: 10.1128/JB.186.21.7186-7195.2004
[50]
Spector MP, Garcia del Portillo F, Bearson SM, Mahmud A, Magut M, et al. (1999) The rpoS-dependent starvation-stress response locus stiA encodes a nitrate reductase (narZYWV) required for carbon-starvation-inducible thermotolerance and acid tolerance in Salmonella typhimurium. Microbiology 145(Pt 11): 3035–3045.
[51]
Spory A, Bosserhoff A, von Rhein C, Goebel W, Ludwig A (2002) Differential regulation of multiple proteins of Escherichia coli and Salmonella enterica serovar Typhimurium by the transcriptional regulator SlyA. J Bacteriol 184: 3549–3559. doi: 10.1128/JB.184.13.3549-3559.2002
[52]
Garsin DA (2010) Ethanolamine utilization in bacterial pathogens: roles and regulation. Nat Rev Microbiol 8: 290–295. doi: 10.1038/nrmicro2334
[53]
Woehlke G, Dimroth P (1994) Anaerobic growth of Salmonella typhimurium on L(+)- and D(-)-tartrate involves an oxaloacetate decarboxylase Na+ pump Arch Microbiol 162: 233–237. doi: 10.1007/bf00301843
[54]
Jain B, Brand BC, Luck PC, Di Berardino M, Dimroth P, et al. (1996) An oxaloacetate decarboxylase homologue protein influences the intracellular survival of Legionella pneumophila. FEMS Microbiol Lett 145: 273–279. doi: 10.1111/j.1574-6968.1996.tb08589.x
[55]
Wanner BL (1993) Gene regulation by phosphate in enteric bacteria. J Cell Biochem 51: 47–54. doi: 10.1002/jcb.240510110
[56]
Nishino K, Latifi T, Groisman EA (2006) Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar. Typhimurium Mol Microbiol 59: 126–141. doi: 10.1111/j.1365-2958.2005.04940.x
[57]
Cain BD, Norton PJ, Eubanks W, Nick HS, Allen CM (1993) Amplification of the bacA gene confers bacitracin resistance to Escherichia coli. J Bacteriol 175: 3784–3789.
[58]
Parra-Lopez C, Baer MT, Groisman EA (1993) Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. EMBO J 12: 4053–4062.