全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sex, Subdivision, and Domestic Dispersal of Trypanosoma cruzi Lineage I in Southern Ecuador

DOI: 10.1371/journal.pntd.0000915

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Molecular epidemiology at the community level has an important guiding role in zoonotic disease control programmes where genetic markers are suitably variable to unravel the dynamics of local transmission. We evaluated the molecular diversity of Trypanosoma cruzi, the etiological agent of Chagas disease, in southern Ecuador (Loja Province). This kinetoplastid parasite has traditionally been a paradigm for clonal population structure in pathogenic organisms. However, the presence of naturally occurring hybrids, mitochondrial introgression, and evidence of genetic exchange in the laboratory question this dogma. Methodology/Principal Findings Eighty-one parasite isolates from domiciliary, peridomiciliary, and sylvatic triatomines and mammals were genotyped across 10 variable microsatellite loci. Two discrete parasite populations were defined: one predominantly composed of isolates from domestic and peridomestic foci, and another predominantly composed of isolates from sylvatic foci. Spatial genetic variation was absent from the former, suggesting rapid parasite dispersal across our study area. Furthermore, linkage equilibrium between loci, Hardy-Weinberg allele frequencies at individual loci, and a lack of repeated genotypes are indicative of frequent genetic exchange among individuals in the domestic/peridomestic population. Conclusions/Significance These data represent novel population-level evidence of an extant capacity for sex among natural cycles of T. cruzi transmission. As such they have dramatic implications for our understanding of the fundamental genetics of this parasite. Our data also elucidate local disease transmission, whereby passive anthropogenic domestic mammal and triatomine dispersal across our study area is likely to account for the rapid domestic/peridomestic spread of the parasite. Finally we discuss how this, and the observed subdivision between sympatric sylvatic and domestic/peridomestic foci, can inform efforts at Chagas disease control in Ecuador.

References

[1]  Miles MA, Llewellyn MS, Lewis MD, Yeo M, Baleela R, et al. (2009) The molecular epidemiology and phylogeography of Trypanosoma cruzi and parallel research on Leishmania: looking back and to the future. Parasitology 136: 1509–1528. doi: 10.1017/S0031182009990977
[2]  Coura JR, Dias JC (2009) Epidemiology, control and surveillance of Chagas disease: 100 years after its discovery. Mem Inst Oswaldo Cruz 104: Suppl 131–40. doi: 10.1590/s0074-02762009000900006
[3]  Moncayo A, Silveira AC (2009) Current epidemiological trends for Chagas disease in Latin America and future challenges in epidemiology, surveillance and health policy. Mem Inst Oswaldo Cruz 104: Suppl 117–30. doi: 10.1590/s0074-02762009000900005
[4]  Aguilar H, Abad-Franch F, Racines V, Paucar A (1999) Epidemiology of Chagas Disese in Ecuador. A brief review. Mem Inst Oswaldo Cruz 94: 387–393. doi: 10.1590/s0074-02761999000700076
[5]  Grijalva MJ, Palomeque-Rodríguez FS, Costales JA, Davila S, Arcos-Teran L (2005) High household infestation rates by synanthropic vectors of Chagas disease in southern Ecuador. J Med Entomol 42: 68–74. doi: 10.1603/0022-2585(2005)042[0068:HHIRBS]2.0.CO;2
[6]  Pinto CM, Ocana-Mayorga S, Lascano MS, Grijalva MJ (2006) Infection by trypanosomes in marsupials and rodents associated with human dwellings in Ecuador. J Parasitol 92: 1251–1255. doi: 10.1645/GE-886R.1
[7]  Grijalva MJ, Villacis AG (2009) Presence of Rhodnius ecuadoriensis in sylvatic habitats in the southern highlands (Loja Province) of Ecuador. J Med Entomol 46: 708–711. doi: 10.1603/033.046.0339
[8]  Miles M, Toye P, Oswald S, Godfrey D (1977) The identification by isoenzyme patterns of two distinct strain-groups of Trypanosoma cruzi, circulating independently in a rural area of Brazil. Transactions of the Royal Society for Tropical Medicine and Hygiene 71: 217–225. doi: 10.1016/0035-9203(77)90012-8
[9]  Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, et al. (2009) A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104: 1051–1054. doi: 10.1590/S0074-02762009000700021
[10]  Anez N, Crisante G, da Silva FM, Rojas A, Carrasco H, et al. (2004) Predominance of lineage I among Trypanosoma cruzi isolates from Venezuelan patients with different clinical profiles of acute Chagas' disease. Trop Med Int Health 9: 1319–1326. doi: 10.1111/j.1365-3156.2004.01333.x
[11]  Zafra G, Mantilla JC, Valadares HM, Macedo AM, González CI (2008) Evidence of Trypanosoma cruzi II infection in Colombian chagasic patients. Parasitol Res 103: 731–734. doi: 10.1007/s00436-008-1034-0
[12]  Guhl F (2007) Chagas disease in Andean countries. Mem Inst Oswaldo Cruz 102: Suppl 129–38. doi: 10.1590/S0074-02762007005000099
[13]  Sanchez-Martin MJ, Feliciangeli MD, Campbell-Lendrum D, Davies CR (2006) Could the Chagas disease elimination programme in Venezuela be compromised by reinvasion of houses by sylvatic Rhodnius prolixus bug populations? Trop Med Int Health 11: 1585–1593. doi: 10.1111/j.1365-3156.2006.01717.x
[14]  Fitzpatrick S, Feliciangeli MD, Sanchez-Martin MJ, Monteiro FA, Miles MA (2008) Molecular Genetics Reveal That Silvatic Rhodnius prolixus Do Colonise Rural Houses. PLoS Negl Trop Dis 2: e210. doi: 10.1371/journal.pntd.0000210
[15]  Herrera C, Bargues MD, Fajardo A, Montilla M, Triana O, et al. (2007) Identifying four Trypanosoma cruzi I isolate haplotypes from different geographic regions in Colombia. Infection, Genetics and Evolution 7: 535–539. doi: 10.1016/j.meegid.2006.12.003
[16]  Llewellyn MS, Miles MA, Carrasco HJ, Lewis MD, Yeo M, et al. (2009) Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specific genotypes linked to human infection. PLoS Pathog 5: e1000410. doi: 10.1371/journal.ppat.1000410
[17]  Llewellyn MS, Lewis MD, Acosta N, Yeo M, Carrasco HJ, et al. (2009) Trypanosoma cruzi IIc: Phylogenetic and Phylogeographic Insights from Sequence and Microsatellite Analysis and Potential Impact on Emergent Chagas Disease. PLoS Negl Trop Dis 3: e510. doi: 10.1371/journal.pntd.0000510
[18]  Koffi M, De Meeus T, Bucheton B, Solano P, Camara M, et al. (2009) Population genetics of Trypanosoma brucei gambiense, the agent of sleeping sickness in Western Africa. Proc Natl Acad Sci U S A 106: 209–214. doi: 10.1073/pnas.0811080106
[19]  Kuhls K, Chicharro C, Ca?avate C, Cortes S, Campino L, et al. (2008) Differentiation and Gene Flow among European Populations of Leishmania infantum MON-1. PLoS Negl Trop Dis 2: e261. doi: 10.1371/journal.pntd.0000261
[20]  Rougeron V, De Meeus T, Hide M, Waleckx E, Bermudez H, et al. (2009) Extreme inbreeding in Leishmania braziliensis. Proc Natl Acad Sci U S A 106: 10224–10229. doi: 10.1073/pnas.0904420106
[21]  Morrison LJ, Tweedie A, Black A, Pinchbeck GL, Christley RM, et al. (2009) Discovery of mating in the major African livestock pathogen Trypanosoma congolense. PLoS One 4: e5564. doi: 10.1371/journal.pone.0005564
[22]  MacLeod A, Tweedie A, Welburn SC, Maudlin I, Turner CM, et al. (2000) Minisatellite marker analysis of Trypanosoma brucei: reconciliation of clonal, panmictic, and epidemic population genetic structures. Proc Natl Acad Sci U S A 97: 13442–13447. doi: 10.1073/pnas.230434097
[23]  Criscione CD, Poulin R, Blouin MS (2005) Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol Ecol 14: 2247–2257. doi: 10.1111/j.1365-294X.2005.02587.x
[24]  De Meeus T, Lehmann L, Balloux F (2006) Molecular epidemiology of clonal diploids: a quick overview and a short DIY (do it yourself) notice. Infect Genet Evol 6: 163–170. doi: 10.1016/j.meegid.2005.02.004
[25]  Vallejo GA, Guhl F, Chiari E, Macedo AM (1999) Species specific detection of Trypanosoma cruzi and Trypanosoma rangeli in vector and mammalian hosts by polymerase chain reaction amplification of kinetoplast minicircle DNA. Acta Trop 72: 203–212. doi: 10.1016/S0001-706X(98)00085-0
[26]  Lewis MD, Ma J, Yeo M, Carrasco HJ, Llewellyn MS, et al. (2009) Genotyping of Trypanosoma cruzi: systematic selection of assays allowing rapid and accurate discrimination of all known lineages. Am J Trop Med Hyg 81: 1041–1049. doi: 10.4269/ajtmh.2009.09-0305
[27]  Weatherly DB, Boehlke C, Tarleton RL (2009) Chromosome level assembly of the hybrid Trypanosoma cruzi genome. BMC Genomics 10: 255. doi: 10.1186/1471-2164-10-255
[28]  Goudet J (1995) FSTAT Version 1.2: a computer program to calculate F-statistics. J Heredity 86: 485–486.
[29]  Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.
[30]  Rice W (1989) Analysing tables of statistical tests. Evolution 43: 223–225. doi: 10.2307/2409177
[31]  Stephens JC, Gilbert DA, Yuhki N, O'Brien SJ (1992) Estimation of heterozygosity for single-probe multilocus DNA fingerprints. Mol Biol Evol 9: 729–743.
[32]  Goldstein DB, Ruiz Linares A, Cavalli-Sforza LL, Feldman MW (1995) Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci U S A 92: 6723–6727. doi: 10.1073/pnas.92.15.6723
[33]  Minch E, Ruiz-Linares A, Goldstein D, Feldman M, Cavalli-Sforza L (1995) MICROSAT- The Microsatellite Distance Program (Stanford University Press, Stanford).
[34]  Peakall R, Smouse P (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295. doi: 10.1111/j.1471-8286.2005.01155.x
[35]  Garnier-Gere P, Dillmann C (1992) A computer program for testing pairwise linkage disequilibria in subdivided populations. J Hered 83: 239.
[36]  Agapow PM, Burt A (2001) Indices of multilocus linkage disequilibrium. Molecular Ecology Notes 1: 101–102. doi: 10.1046/j.1471-8278.2000.00014.x
[37]  Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x
[38]  Maynard Smith J, Smith NH, O'Rourke M, Spratt BG (1993) How Clonal are Bacteria? Proceedings of the National Academy of Sciences 90: 4384–4388. doi: 10.1073/pnas.90.10.4384
[39]  Mejia-Jaramillo AM, Pena VH, Triana-Chavez O (2009) Trypanosoma cruzi: Biological characterization of lineages I and II supports the predominance of lineage I in Colombia. Exp Parasitol 121: 83–91. doi: 10.1016/j.exppara.2008.10.002
[40]  Carrasco HJ, Torrellas A, García C, Segovia M, Feliciangeli MD (2005) Risk of Trypanosoma cruzi I (Kinetoplastida: Trypanosomatidae) transmission by Panstrongylus geniculatus (Hemiptera: Reduviidae) in Caracas (Metropolitan District) and neighboring States, Venezuela. Int J Parasitol 35: 1379–1384. doi: 10.1016/j.ijpara.2005.05.003
[41]  Spotorno OA, Córdova L, Solari IA (2008) Differentiation of Trypanosoma cruzi I subgroups through characterization of cytochrome b gene sequences. Infection, Genetics and Evolution 8: 898–900. doi: 10.1016/j.meegid.2008.08.006
[42]  Hoare CA (1972) The trypanosomes of mammals (Blackwell Scientific Publications).
[43]  Rabinovich JE, Wisnivesky-Colli C, Solarz ND, Gurtler RE (1990) Probability of transmission of Chagas disease by Triatoma infestans (Hemiptera: Reduviidae) in an endemic area of Santiago del Estero, Argentina. Bull World Health Organ 68: 737–746.
[44]  Tibayrenc M, Kjellberg F, Ayala F (1990) A Clonal Theory of Parasitic Protozoa: The Population Structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their Medical and Taxonomical Consequences. Proc Natl Acad Sci U S A 87: 2414–2418. doi: 10.1073/pnas.87.7.2414
[45]  Tibayrenc M, Ayala FJ (2002) The clonal theory of parasitic protozoa: 12 years on. Trends Parasitol 18: 405–410. doi: 10.1016/S1471-4922(02)02357-7
[46]  Machado CA, Ayala FJ (2001) Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of Trypanosoma cruzi. Proc Natl Acad Sci U S A 98: 7396–7401. doi: 10.1073/pnas.121187198
[47]  Gaunt MW, Yeo M, Frame IA, Stothard JE, Carrasco HJ, et al. (2003) Mechanism of genetic exchange in American trypanosomes. Nature 421: 936–939. doi: 10.1038/nature01438
[48]  Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959.
[49]  Corander J, Waldmann P, Sillanpaa MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163: 367–374.
[50]  Holzmuller P, Herder S, Cuny G, De Meeus T (2009) From clonal to sexual: a step in T. congolense evolution? Trends Parasitol 26: 56–60. doi: 10.1016/j.pt.2009.11.006
[51]  Gibson W, Stevens J (1999) Genetic exchange in the trypanosomatidae. Adv Parasitol 43: 1–46. doi: 10.1016/s0065-308x(08)60240-7
[52]  Akopyants NS, Kimblin N, Secundino N, Patrick R, Peters N, et al. (2009) Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science 324: 265–268. doi: 10.1126/science.1169464

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133