Background Currently dengue viruses (DENV) pose an increasing threat to over 2.5 billion people in over 100 tropical and sub-tropical countries worldwide. International air travel is facilitating rapid global movement of DENV, increasing the risk of severe dengue epidemics by introducing different serotypes. Accurate diagnosis is critical for early initiation of preventive measures. Different reverse transcriptase PCR (RT-PCR) methods are available, which should be evaluated and standardized. Epidemiological and laboratory-based surveillance is required to monitor and guide dengue prevention and control programmes, i.e., by mosquito control or possible vaccination (as soon as an effective and safe vaccine becomes available). Objective The purpose of the external quality assurance (EQA) study described is to assess the efficiency and accuracy of dengue molecular diagnosis methods applied by expert laboratories. Study Design A panel of 12 human plasma samples was distributed and tested for DENV-specific RNA. The panel comprised 9 samples spiked with different DENV serotypes (DENV-1 to DENV-4), including 10-fold dilution series of DENV-1 and DENV-3. Two specificity controls consisted of a sample with a pool of 4 other flaviviruses and a sample with chikungunya virus. A negative control sample was also included. Results Thirty-seven laboratories (from Europe, Middle East Asia, Asia, the Americas/Caribbean, and Africa) participated in this EQA study, and reports including 46 sets of results were returned. Performance among laboratories varied according to methodologies used. Only 5 (10.9%) data sets met all criteria with optimal performance, and 4 (8.7%) with acceptable performance, while 37 (80.4%) reported results showed the need for improvement regarding accomplishment of dengue molecular diagnosis. Failures were mainly due to lack of sensitivity and the presence of false positives. Conclusions The EQA provides information on each laboratory's efficacy of RT-PCR techniques for dengue diagnosis and indicates for most laboratories an urgent need to improve sensitivity and specificity.
References
[1]
Kurane I, Ennis FE (1992) Immunity and immunopathology in dengue virus infections. Semin Immunol 4: 121–127.
[2]
Halstead SB (1981) The Alexander D. Langmuir Lecture. The pathogenesis of dengue. Molecular epidemiology in infectious disease. Am J Epidemiol 114: 632–648.
[3]
Rico-Hesse R, Harrison LM, Salas RA, Tovar D, Nisalak A, et al. (1997) Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology 230: 244–251. doi: 10.1006/viro.1997.8504
[4]
McBride WJ, Bielefeldt-Ohmann H (2000) Dengue viral infections; pathogenesis and epidemiology. Microbes Infect 2: 1041–1050. doi: 10.1016/S1286-4579(00)01258-2
[5]
W.H.O (2002) Dengue and dengue haemorragic fever. Fact Sheet 117:
[6]
Kao CL, King CC, Chao DY, Wu HL, Chang GJ (2005) Laboratory diagnosis of dengue virus infection: current and future perspectives in clinical diagnosis and public health. J Microbiol Immunol Infect 38: 5–16.
[7]
Chow VT, Chan YC, Yong R, Lee KM, Lim LK, et al. (1998) Monitoring of dengue viruses in field-caught Aedes aegypti and Aedes albopictus mosquitoes by a type-specific polymerase chain reaction and cycle sequencing. Am J Trop Med Hyg 58: 578–586.
[8]
Donoso Mantke O, Lemmer K, Biel SS, Groen J, Schmitz H, et al. (2004) Quality control assessment for the serological diagnosis of dengue virus infections. J Clin Virol 29: 105–112. doi: 10.1016/S1386-6532(03)00110-0
[9]
Lemmer K, Donoso Mantke O, Bae HG, Groen J, Drosten C, et al. (2004) External quality control assessment in PCR diagnostics of dengue virus infections. J Clin Virol 30: 291–296. doi: 10.1016/j.jcv.2003.11.002
[10]
Donoso Mantke O, Schmitz H, Zeller H, Heyman P, Papa A, et al. (2005) Quality assurance for the diagnostics of viral diseases to enhance the emergency preparedness in Europe. Euro Surveill 10: 102–106.
[11]
Domingo C, Palacios G, Jabado O, Reyes N, Niedrig M, et al. (2006) Use of a short fragment of the C-terminal E gene for detection and characterization of two new lineages of dengue virus 1 in India. J Clin Microbiol 44: 1519–1529. doi: 10.1128/JCM.44.4.1519-1529.2006
[12]
Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV (1992) Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol 30: 545–551.
[13]
Chinnawirotpisan P, Mammen MP Jr, Nisalak A, Thaisomboonsuk B, Narupiti S, et al. (2008) Detection of concurrent infection with multiple dengue virus serotypes in Thai children by ELISA and nested RT-PCR assay. Arch Virol 153: 2225–2232. doi: 10.1007/s00705-008-0249-9
[14]
Laue T, Emmerich P, Schmitz H (1999) Detection of dengue virus RNA in patients after primary or secondary dengue infection by using the TaqMan automated amplification system. J Clin Microbiol 37: 2543–2547.
[15]
ter Meulen J, Grau M, Lenz O, Emmerich P, Schmitz H, et al. (2000) Isolation and partial characterization of dengue virus type 2 and 4 strains from dengue fever and dengue haemorrhagic fever patients from Mindanao, Republic of the Philippines. Trop Med Int Health 5: 325–329. doi: 10.1046/j.1365-3156.2000.00562.x
[16]
Sanchez-Seco MP, Rosario D, Hernandez L, Domingo C, Valdes K, et al. (2006) Detection and subtyping of dengue 1-4 and yellow fever viruses by means of a multiplex RT-nested-PCR using degenerated primers. Trop Med Int Health 11: 1432–1441. doi: 10.1111/j.1365-3156.2006.01696.x
[17]
Scaramozzino N, Crance JM, Jouan A, DeBriel DA, Stoll F, et al. (2001) Comparison of flavivirus universal primer pairs and development of a rapid, highly sensitive heminested reverse transcription-PCR assay for detection of flaviviruses targeted to a conserved region of the NS5 gene sequences. J Clin Microbiol 39: 1922–1927. doi: 10.1128/JCM.39.5.1922-1927.2001
[18]
Johnson BW, Russell BJ, Lanciotti RS (2005) Serotype-specific detection of dengue viruses in a fourplex real-time reverse transcriptase PCR assay. J Clin Microbiol 43: 4977–4983. doi: 10.1128/JCM.43.10.4977-4983.2005
[19]
Drosten C, Gottig S, Schilling S, Asper M, Panning M, et al. (2002) Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol 40: 2323–2330. doi: 10.1128/JCM.40.7.2323-2330.2002
[20]
Ito M, Takasaki T, Yamada K, Nerome R, Tajima S, et al. (2004) Development and evaluation of fluorogenic TaqMan reverse transcriptase PCR assays for detection of dengue virus types 1 to 4. J Clin Microbiol 42: 5935–5937. doi: 10.1128/JCM.42.12.5935-5937.2004
[21]
Leparc-Goffart I, Baragatti M, Temmam S, Tuiskunen A, Moureau G, et al. (2009) Development and validation of real-time one-step reverse transcription-PCR for the detection and typing of dengue viruses. J Clin Virol 45: 61–66. doi: 10.1016/j.jcv.2009.02.010
[22]
Gurukumar KR, Priyadarshini D, Patil JA, Bhagat A, Singh A, et al. (2009) Development of real time PCR for detection and quantitation of Dengue Viruses. Virol J 6: 10. doi: 10.1186/1743-422X-6-10
[23]
Dumoulin A, Marti H, Panning M, Hatz C, Hirsch HH (2008) Pan-dengue virus detection by PCR for travelers returning from the tropics. J Clin Microbiol 46: 3104–3106. doi: 10.1128/JCM.01294-08
[24]
Raengsakulrach B, Nisalak A, Maneekarn N, Yenchitsomanus PT, Limsomwong C, et al. (2002) Comparison of four reverse transcription-polymerase chain reaction procedures for the detection of dengue virus in clinical specimens. J Virol Methods 105: 219–232. doi: 10.1016/S0166-0934(02)00104-0
[25]
Thomas L, Verlaeten O, Cabie A, Kaidomar S, Moravie V, et al. (2008) Influence of the dengue serotype, previous dengue infection, and plasma viral load on clinical presentation and outcome during a dengue-2 and dengue-4 co-epidemic. Am J Trop Med Hyg 78: 990–998.
[26]
Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, et al. (2000) Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181: 2–9. doi: 10.1086/315215
[27]
Wang WK, Chao DY, Kao CL, Wu HC, Liu YC, et al. (2003) High levels of plasma dengue viral load during defervescence in patients with dengue hemorrhagic fever: implications for pathogenesis. Virology 305: 330–338. doi: 10.1006/viro.2002.1704
[28]
Domingo C, Palacios G, Niedrig M, Cabrerizo M, Jabado O, et al. (2004) A New Tool for the Diagnosis and Molecular. Surveillance of Dengue Infections in Clinical Samples. Dengue Bulletin 28: 87–95.
[29]
Lai YL, Chung YK, Tan HC, Yap HF, Yap G, et al. (2007) Cost-effective real-time reverse transcriptase PCR (RT-PCR) to screen for Dengue virus followed by rapid single-tube multiplex RT-PCR for serotyping of the virus. J Clin Microbiol 45: 935–941. doi: 10.1128/JCM.01258-06