Leptospirosis is a widespread zoonotic infection that primarily affects residents of tropical regions, but causes infections in animals and humans in temperate regions as well. The agents of leptospirosis comprise several members of the genus Leptospira, which also includes non-pathogenic, saprophytic species. Leptospirosis can vary in severity from a mild, non-specific illness to severe disease that includes multi-organ failure and widespread endothelial damage and hemorrhage. To begin to investigate how pathogenic leptospires affect endothelial cells, we compared the responses of two endothelial cell lines to infection by pathogenic versus non-pathogenic leptospires. Microarray analyses suggested that pathogenic L. interrogans and non-pathogenic L. biflexa triggered changes in expression of genes whose products are involved in cellular architecture and interactions with the matrix, but that the changes were in opposite directions, with infection by L. biflexa primarily predicted to increase or maintain cell layer integrity, while L. interrogans lead primarily to changes predicted to disrupt cell layer integrity. Neither bacterial strain caused necrosis or apoptosis of the cells even after prolonged incubation. The pathogenic L. interrogans, however, did result in significant disruption of endothelial cell layers as assessed by microscopy and the ability of the bacteria to cross the cell layers. This disruption of endothelial layer integrity was abrogated by addition of the endothelial protective drug lisinopril at physiologically relevant concentrations. These results suggest that, through adhesion of L. interrogans to endothelial cells, the bacteria may disrupt endothelial barrier function, promoting dissemination of the bacteria and contributing to severe disease manifestations. In addition, supplementing antibiotic therapy with lisinopril or derivatives with endothelial protective activities may decrease the severity of leptospirosis.
References
[1]
Faine S, Adler B, Bolin C, Perolat P (1999) Leptospira and Leptospirosis. Melbourne, Australia: MedSci.
Ballard SA, Williamson M, Adler B, Vinh T, Faine S (1986) Interactions of virulent and avirulent leptospires with primary cultures of renal epithelial cells. J Med Microbiol 21: 59–67. doi: 10.1099/00222615-21-1-59
[4]
Ito T, Yanagawa R (1987) Leptospiral attachment to four structural components of extracellular matrix. Nippon Juigaku Zasshi 49: 875–882. doi: 10.1292/jvms1939.49.875
[5]
Ito T, Yanagawa R (1987) Leptospiral attachment to extracellular matrix of mouse fibroblast (L929) cells. Vet Microbiol 15: 89–96. doi: 10.1016/0378-1135(87)90133-7
[6]
Merien F, Baranton G, Perolat P (1997) Invasion of Vero cells and induction of apoptosis in macrophages by pathogenic Leptospira interrogans are correlated with virulence. Infect Immun 65: 729–738.
[7]
Merien F, Truccolo J, Baranton G, Perolat P (2000) Identification of a 36-kDa fibronectin-binding protein expressed by a virulent variant of Leptospira interrogans serovar icterohaemorrhagiae. FEMS Microbiol Lett 185: 17–22. doi: 10.1111/j.1574-6968.2000.tb09034.x
[8]
Thomas DD, Higbie LM (1990) In vitro association of leptospires with host cells. Infection & Immunity 58: 581–585.
[9]
Tsuchimoto M, Niikura M, Ono E, Kida H, Yanagawa R (1984) Leptospiral attachment to cultured cells. Zentralbl Bakteriol Mikrobiol Hyg [A] 258: 268–274. doi: 10.1016/S0176-6724(84)80044-9
[10]
Barbosa AS, Abreu PA, Neves FO, Atzingen MV, Watanabe MM, et al. (2006) A Newly Identified Leptospiral Adhesin Mediates Attachment to Laminin. Infect Immun 74: 6356–6364. doi: 10.1128/IAI.00460-06
[11]
Choy HA, Kelley MM, Chen TL, Moller AK, Matsunaga J, et al. (2007) Physiological osmotic induction of Leptospira interrogans adhesion: LigA and LigB bind extracellular matrix proteins and fibrinogen. Infect Immun 75: 2441–2450. doi: 10.1128/IAI.01635-06
[12]
Stevenson B, Choy HA, Pinne M, Rotondi ML, Miller MC, et al. (2007) Leptospira interrogans Endostatin-Like Outer Membrane Proteins Bind Host Fibronectin, Laminin and Regulators of Complement. PLoS ONE 2: e1188. doi: 10.1371/journal.pone.0001188
[13]
Lo M, Bulach DM, Powell DR, Haake DA, Matsunaga J, et al. (2006) Effects of temperature on gene expression patterns in Leptospira interrogans serovar Lai as assessed by whole-genome microarrays. Infect Immun 74: 5848–5859. doi: 10.1128/IAI.00755-06
[14]
Matsunaga J, Lo M, Bulach DM, Zuerner RL, Adler B, et al. (2007) Response of Leptospira interrogans to Physiologic Osmolarity: Relevance in Signaling the Environment-to-Host Transition. Infect Immun. doi: 10.1128/iai.01619-06
[15]
Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, et al. (1992) HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol 99: 683–690. doi: 10.1111/1523-1747.ep12613748
[16]
Edgell CJ, McDonald CC, Graham JB (1983) Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proceedings of the National Academy of Sciences of the United States of America 80: 3734–3737. doi: 10.1073/pnas.80.12.3734
[17]
Breiner DD, Fahey M, Salvador R, Novakova J, Coburn J (2009) Leptospira interrogans binds to human cell surface receptors including proteoglycans. Infect Immun 77: 5528–5536. doi: 10.1128/IAI.00546-09
[18]
Zhang B, Kirov S, Snoddy J (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33: W741–748. doi: 10.1093/nar/gki475
[19]
Buhl AM, Johnson NL, Dhanasekaran N, Johnson GL (1995) G alpha 12 and G alpha 13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. J Biol Chem 270: 24631–24634. doi: 10.1074/jbc.270.42.24631
[20]
Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389–399. doi: 10.1016/0092-8674(92)90163-7
[21]
Nascimento AL, Ko AI, Martins EA, Monteiro-Vitorello CB, Ho PL, et al. (2004) Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 186: 2164–2172. doi: 10.1128/JB.186.7.2164-2172.2004
[22]
Nascimento AL, Verjovski-Almeida S, Van Sluys MA, Monteiro-Vitorello CB, Camargo LE, et al. (2004) Genome features of Leptospira interrogans serovar Copenhageni. Braz J Med Biol Res 37: 459–477. doi: 10.1590/S0100-879X2004000400003
[23]
Ren SX, Fu G, Jiang XG, Zeng R, Miao YG, et al. (2003) Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature 422: 888–893. doi: 10.1038/nature01597
[24]
Baldwin MR, Barbieri JT (2005) The type III cytotoxins of Yersinia and Pseudomonas aeruginosa that modulate the actin cytoskeleton. Curr Top Microbiol Immunol 291: 147–166. doi: 10.1007/3-540-27511-8_8
[25]
Parsot C (2009) Shigella type III secretion effectors: how, where, when, for what purposes? Curr Opin Microbiol 12: 110–116. doi: 10.1016/j.mib.2008.12.002
[26]
Sal-Man N, Biemans-Oldehinkel E, Finlay BB (2009) Structural microengineers: pathogenic Escherichia coli redesigns the actin cytoskeleton in host cells. Structure 17: 15–19. doi: 10.1016/j.str.2008.12.001
[27]
Sansonetti P (2002) Host-pathogen interactions: the seduction of molecular cross talk. Gut 50: Suppl 3III2–8. doi: 10.1136/gut.50.suppl_3.iii2
[28]
Trosky JE, Liverman AD, Orth K (2008) Yersinia outer proteins: Yops. Cell Microbiol 10: 557–565. doi: 10.1111/j.1462-5822.2007.01109.x
[29]
Picardeau M, Bulach DM, Bouchier C, Zuerner RL, Zidane N, et al. (2008) Genome sequence of the saprophyte Leptospira biflexa provides insights into the evolution of Leptospira and the pathogenesis of leptospirosis. PLoS ONE 3: e1607. doi: 10.1371/journal.pone.0001607
[30]
Ikegami A, Honma K, Sharma A, Kuramitsu HK (2004) Multiple functions of the leucine-rich repeat protein LrrA of Treponema denticola. Infect Immun 72: 4619–4627. doi: 10.1128/IAI.72.8.4619-4627.2004
[31]
Diament D, Brunialti MK, Romero EC, Kallas EG, Salomao R (2002) Peripheral blood mononuclear cell activation induced by Leptospira interrogans glycolipoprotein. Infect Immun 70: 1677–1683. doi: 10.1128/IAI.70.4.1677-1683.2002
[32]
Vinh T, Adler B, Faine S (1986) Glycolipoprotein cytotoxin from Leptospira interrogans serovar copenhageni. J Gen Microbiol 132 ( Pt 1): 111–123. doi: 10.1099/00221287-132-1-111
[33]
Werts C, Tapping RI, Mathison JC, Chuang TH, Kravchenko V, et al. (2001) Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2: 346–352. doi: 10.1038/86354
[34]
Basu S, Nagy JA, Pal S, Vasile E, Eckelhoefer IA, et al. (2001) The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med 7: 569–574. doi: 10.1038/87895
[35]
Bhattacharya R, Sinha S, Yang SP, Patra C, Dutta S, et al. (2008) The neurotransmitter dopamine modulates vascular permeability in the endothelium. J Mol Signal 3: 14. doi: 10.1186/1750-2187-3-14
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, et al. (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426: 450–454. doi: 10.1038/nature02145
[38]
Laufs U, Liao JK (2000) Targeting Rho in cardiovascular disease. Circ Res 87: 526–528. doi: 10.1161/01.RES.87.7.526
[39]
Fainaru O, Adini I, Benny O, Bazinet L, Pravda E, et al. (2008) Doxycycline induces membrane expression of VE-cadherin on endothelial cells and prevents vascular hyperpermeability. Faseb J 22: 3728–3735. doi: 10.1096/fj.08-110494
[40]
McClain JB, Ballou WR, Harrison SM, Steinweg DL (1984) Doxycycline therapy for leptospirosis. Ann Intern Med 100: 696–698. doi: 10.7326/0003-4819-100-5-696
Barbieri JT, Riese MJ, Aktories K (2002) Bacterial Toxins that Modify the Actin Cytoskeleton. Annu Rev Cell Dev Biol.
[43]
Amin M, Ho AC, Lin JY, Batista da Silva AP, Glogauer M, et al. (2004) Induction of de novo subcortical actin filament assembly by Treponema denticola major outer sheath protein. Infect Immun 72: 3650–3654. doi: 10.1128/IAI.72.6.3650-3654.2004
[44]
Puthengady Thomas B, Sun CX, Bajenova E, Ellen RP, Glogauer M (2006) Modulation of human neutrophil functions in vitro by Treponema denticola major outer sheath protein. Infect Immun 74: 1954–1957. doi: 10.1128/IAI.74.3.1954-1957.2006
[45]
Barocchi MA, Ko AI, Reis MG, McDonald KL, Riley LW (2002) Rapid translocation of polarized MDCK cell monolayers by Leptospira interrogans, an invasive but nonintracellular pathogen. Infect Immun 70: 6926–6932. doi: 10.1128/IAI.70.12.6926-6932.2002
[46]
Lee SH, Kim KA, Park YG, Seong IW, Kim MJ, et al. (2000) Identification and partial characterization of a novel hemolysin from Leptospira interrogans serovar lai. Gene 254: 19–28. doi: 10.1016/S0378-1119(00)00293-6
[47]
Lee SH, Kim S, Park SC, Kim MJ (2002) Cytotoxic activities of Leptospira interrogans hemolysin SphH as a pore-forming protein on mammalian cells. Infect Immun 70: 315–322. doi: 10.1128/IAI.70.1.315-322.2002
[48]
Hoeflich KP, Ikura M (2004) Radixin: cytoskeletal adopter and signaling protein. Int J Biochem Cell Biol 36: 2131–2136. doi: 10.1016/j.biocel.2003.11.018
[49]
Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273: 5419–5422. doi: 10.1074/jbc.273.10.5419
Steffen A, Rottner K, Ehinger J, Innocenti M, Scita G, et al. (2004) Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation. Embo J 23: 749–759. doi: 10.1038/sj.emboj.7600084
[52]
Gilmore AP, Burridge K (1996) Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphosphate. Nature 381: 531–535. doi: 10.1038/381531a0
[53]
Narumiya S (1996) The small GTPase Rho: cellular functions and signal transduction. J Biochem 120: 215–228. doi: 10.1093/oxfordjournals.jbchem.a021401
[54]
Astier C, Raynaud F, Lebart MC, Roustan C, Benyamin Y (1998) Binding of a native titin fragment to actin is regulated by PIP2. FEBS Lett 429: 95–98. doi: 10.1016/S0014-5793(98)00572-9