Background Neurocysticercosis is a disease caused by the oral ingestion of eggs from the human parasitic worm Taenia solium. Although drugs are available they are controversial because of the side effects and poor efficiency. An expressed sequence tag (EST) library is a method used to describe the gene expression profile and sequence of mRNA from a specific organism and stage. Such information can be used in order to find new targets for the development of drugs and to get a better understanding of the parasite biology. Methods and Findings Here an EST library consisting of 5760 sequences from the pig cysticerca stage has been constructed. In the library 1650 unique sequences were found and of these, 845 sequences (52%) were novel to T. solium and not identified within other EST libraries. Furthermore, 918 sequences (55%) were of unknown function. Amongst the 25 most frequently expressed sequences 6 had no relevant similarity to other sequences found in the Genbank NR DNA database. A prediction of putative signal peptides was also performed and 4 among the 25 were found to be predicted with a signal peptide. Proposed vaccine and diagnostic targets T24, Tsol18/HP6 and Tso31d could also be identified among the 25 most frequently expressed. Conclusions An EST library has been produced from pig cysticerca and analyzed. More than half of the different ESTs sequenced contained a sequence with no suggested function and 845 novel EST sequences have been identified. The library increases the knowledge about what genes are expressed and to what level. It can also be used to study different areas of research such as drug and diagnostic development together with parasite fitness via e.g. immune modulation.
References
[1]
Aguilar-Diaz H, Bobes RJ, Carrero JC, Camacho-Carranza R, Cervantes C, et al. (2006) The genome project of Taenia solium. Parasitol Int 55: SupplS127–130. doi: 10.1016/j.parint.2005.11.020
[2]
Garcia HH, Evans CA, Nash TE, Takayanagui OM, White AC Jr, et al. (2002) Current consensus guidelines for treatment of neurocysticercosis. Clin Microbiol Rev 15: 747–756. doi: 10.1128/CMR.15.4.747-756.2002
[3]
Garcia HH, Del Brutto OH (2005) Neurocysticercosis: updated concepts about an old disease. Lancet Neurol 4: 653–661. doi: 10.1016/S1474-4422(05)70194-0
[4]
Del Brutto OH, Rajshekhar V, White AC Jr, Tsang VC, Nash TE, et al. (2001) Proposed diagnostic criteria for neurocysticercosis. Neurology 57: 177–183. doi: 10.1212/WNL.57.2.177
[5]
Nash TE, Del Brutto OH, Butman JA, Corona T, Delgado-Escueta A, et al. (2004) Calcific neurocysticercosis and epileptogenesis. Neurology 62: 1934–1938. doi: 10.1212/01.WNL.0000129481.12067.06
[6]
Montano SM, Villaran MV, Ylquimiche L, Figueroa JJ, Rodriguez S, et al. (2005) Neurocysticercosis: association between seizures, serology, and brain CT in rural Peru. Neurology 65: 229–233. doi: 10.1212/01.wnl.0000168828.83461.09
[7]
Medina MT, Rosas E, Rubio-Donnadieu F, Sotelo J (1990) Neurocysticercosis as the main cause of late-onset epilepsy in Mexico. Arch Intern Med 150: 325–327. doi: 10.1001/archinte.150.2.325
[8]
Sanchez AL, Ljungstrom I, Medina MT (1999) Diagnosis of human neurocysticerocosis in endemic countries: a clinical study in Honduras. Parasitol Int 48: 81–89. doi: 10.1016/S1383-5769(99)00007-0
[9]
Lescano AG, Garcia HH, Gilman RH, Gavidia CM, Tsang VC, et al. (2009) Taenia solium Cysticercosis Hotspots Surrounding Tapeworm Carriers: Clustering on Human Seroprevalence but Not on Seizures. PLoS Negl Trop Dis 3: e371. doi: 10.1371/journal.pntd.0000371
[10]
Rickard MD (1991) Cestode vaccines. Southeast Asian J Trop Med Public Health 22: Suppl287–290.
[11]
Flisser A, Gauci CG, Zoli A, Martinez-Ocana J, Garza-Rodriguez A, et al. (2004) Induction of protection against porcine cysticercosis by vaccination with recombinant oncosphere antigens. Infect Immun 72: 5292–5297. doi: 10.1128/IAI.72.9.5292-5297.2004
[12]
Lightowlers MW (2006) Cestode vaccines: origins, current status and future prospects. Parasitology 133: SupplS27–42. doi: 10.1017/S003118200600179X
[13]
Lightowlers MW (2006) Vaccines against cysticercosis and hydatidosis: foundations in taeniid cestode immunology. Parasitol Int 55: SupplS39–43. doi: 10.1016/j.parint.2005.11.005
[14]
Carpio A, Kelvin EA, Bagiella E, Leslie D, Leon P, et al. (2008) Effects of albendazole treatment on neurocysticercosis: a randomised controlled trial. J Neurol Neurosurg Psychiatry 79: 1050–1055. doi: 10.1136/jnnp.2008.144899
[15]
Alarcon F (2006) [Neurocysticercosis: its aetiopathogenesis, clinical manifestations, diagnosis and treatment]. Rev Neurol 43: Suppl 1S93–100.
[16]
Almeida CR, Stoco PH, Wagner G, Sincero TC, Rotava G, et al. (2009) Transcriptome analysis of Taenia solium cysticerci using Open Reading Frame ESTs (ORESTES). Parasit Vectors 2: 35. doi: 10.1186/1756-3305-2-35
[17]
Clark MS, Edwards YJ, Peterson D, Clifton SW, Thompson AJ, et al. (2003) Fugu ESTs: new resources for transcription analysis and genome annotation. Genome Res 13: 2747–2753. doi: 10.1101/gr.1691503
[18]
Abernathy JW, Xu P, Li P, Xu DH, Kucuktas H, et al. (2007) Generation and analysis of expressed sequence tags from the ciliate protozoan parasite Ichthyophthirius multifiliis. BMC Genomics 8: 176. doi: 10.1186/1471-2164-8-176
[19]
Hancock K, Pattabhi S, Whitfield FW, Yushak ML, Lane WS, et al. (2006) Characterization and cloning of T24, a Taenia solium antigen diagnostic for cysticercosis. Mol Biochem Parasitol 147: 109–117. doi: 10.1016/j.molbiopara.2006.02.004
[20]
Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8: 186–194. doi: 10.1101/gr.8.3.175
[21]
Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8: 175–185. doi: 10.1101/gr.8.3.175
[22]
Gordon D (2003) Viewing and editing assembled sequences using Consed. Curr Protoc Bioinformatics Chapter 11: Unit11 12. doi: 10.1002/0471250953.bi1102s02
[23]
Wernersson R (2006) Virtual Ribosome–a comprehensive DNA translation tool with support for integration of sequence feature annotation. Nucleic Acids Res 34: W385–388. doi: 10.1093/nar/gkl252
[24]
Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340: 783–795. doi: 10.1016/j.jmb.2004.05.028
[25]
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, et al. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–3676. doi: 10.1093/bioinformatics/bti610
[26]
Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21: 3787–3793. doi: 10.1093/bioinformatics/bti430
[27]
Wu J, Mao X, Cai T, Luo J, Wei L (2006) KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res 34: W720–724. doi: 10.1093/nar/gkl167
[28]
Greene RM, Hancock K, Wilkins PP, Tsang VC (2000) Taenia solium: molecular cloning and serologic evaluation of 14- and 18-kDa related, diagnostic antigens. J Parasitol 86: 1001–1007. doi: 10.1645/0022-3395(2000)086[1001:TSMCAS]2.0.CO;2
[29]
Wheeler DL, Chappey C, Lash AE, Leipe DD, Madden TL, et al. (2000) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 28: 10–14. doi: 10.1093/nar/28.1.10
[30]
O'Donnell RA, Blackman MJ (2005) The role of malaria merozoite proteases in red blood cell invasion. Curr Opin Microbiol 8: 422–427. doi: 10.1016/j.mib.2005.06.018
[31]
Tosini F, Trasarti E, Pozio E (2006) Apicomplexa genes involved in the host cell invasion: the Cpa135 protein family. Parassitologia 48: 105–107.
[32]
Maizels RM, Yazdanbakhsh M (2003) Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat Rev Immunol 3: 733–744. doi: 10.1038/nri1183
[33]
Mayta H, Hancock K, Levine MZ, Gilman RH, Farfan MJ, et al. (2007) Characterization of a novel Taenia solium oncosphere antigen. Mol Biochem Parasitol 156: 154–161. doi: 10.1016/j.molbiopara.2007.07.017
[34]
Gonzalez S, Flo M, Margenat M, Duran R, Gonzalez-Sapienza G, et al. (2009) A family of diverse Kunitz inhibitors from Echinococcus granulosus potentially involved in host-parasite cross-talk. PLoS One 4: e7009. doi: 10.1371/journal.pone.0007009
[35]
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29. doi: 10.1038/75556
[36]
Blaxter M, Daub J, Guiliano D, Parkinson J, Whitton C (2002) The Brugia malayi genome project: expressed sequence tags and gene discovery. Trans R Soc Trop Med Hyg 96: 7–17. doi: 10.1016/S0035-9203(02)90224-5
[37]
LoVerde PT, Hirai H, Merrick JM, Lee NH, El-Sayed N (2004) Schistosoma mansoni genome project: an update. Parasitol Int 53: 183–192. doi: 10.1016/j.parint.2004.01.009
[38]
Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, et al. (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460: 352–358. doi: 10.1038/nature08160
[39]
(2009) The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460: 345–351. doi: 10.1038/nature08140
[40]
Parkhouse RM, Bonay P, Gonzalez LM, Ferrer E, Garate T, et al. (2008) TSOL18/HP6-Tsol, an immunogenic Taenia solium oncospheral adhesion protein and potential protective antigen. Parasitol Res 102: 921–926. doi: 10.1007/s00436-007-0853-8
[41]
Lightowlers MW (2004) Vaccination for the prevention of cysticercosis. Dev Biol (Basel) 119: 361–368.
[42]
Waterkeyn J, Gauci C, Cowman A, Lightowlers M (1997) Sequence analysis of a gene family encoding Taenia ovis vaccine antigens expressed during embryogenesis of eggs. Mol Biochem Parasitol 86: 75–84. doi: 10.1016/s0166-6851(97)90007-4
[43]
Gomez-Escobar N, Gregory WF, Maizels RM (2000) Identification of tgh-2, a filarial nematode homolog of Caenorhabditis elegans daf-7 and human transforming growth factor beta, expressed in microfilarial and adult stages of Brugia malayi. Infect Immun 68: 6402–6410. doi: 10.1128/IAI.68.11.6402-6410.2000
[44]
Vermeire JJ, Cho Y, Lolis E, Bucala R, Cappello M (2008) Orthologs of macrophage migration inhibitory factor from parasitic nematodes. Trends Parasitol 24: 355–363. doi: 10.1016/j.pt.2008.04.007
[45]
Major IT, Constabel CP (2008) Functional analysis of the Kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores. Plant Physiol 146: 888–903. doi: 10.1104/pp.107.106229
[46]
Gupta S, Srivastava AK (2005) Biochemical targets in filarial worms for selective antifilarial drug design. Acta Parasitologica. - ed. pp. 1230–2821.
[47]
Tachu B, Pillai S, Lucius R, Pogonka T (2008) Essential role of chitinase in the development of the filarial nematode Acanthocheilonema viteae. Infect Immun 76: 221–228. doi: 10.1128/IAI.00701-07
[48]
Crowther GJ, Shanmugam D, Carmona SJ, Doyle MA, Hertz-Fowler C, et al. (2010) Identification of attractive drug targets in neglected-disease pathogens using an in silico approach. PLoS Negl Trop Dis 4: e804. doi: 10.1371/journal.pntd.0000804