全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Quantifying the Spatial Dimension of Dengue Virus Epidemic Spread within a Tropical Urban Environment

DOI: 10.1371/journal.pntd.0000920

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Dengue infection spread in naive populations occurs in an explosive and widespread fashion primarily due to the absence of population herd immunity, the population dynamics and dispersal of Ae. aegypti, and the movement of individuals within the urban space. Knowledge on the relative contribution of such factors to the spatial dimension of dengue virus spread has been limited. In the present study we analyzed the spatio-temporal pattern of a large dengue virus-2 (DENV-2) outbreak that affected the Australian city of Cairns (north Queensland) in 2003, quantified the relationship between dengue transmission and distance to the epidemic's index case (IC), evaluated the effects of indoor residual spraying (IRS) on the odds of dengue infection, and generated recommendations for city-wide dengue surveillance and control. Methods and Findings We retrospectively analyzed data from 383 DENV-2 confirmed cases and 1,163 IRS applications performed during the 25-week epidemic period. Spatial (local k-function, angular wavelets) and space-time (Knox test) analyses quantified the intensity and directionality of clustering of dengue cases, whereas a semi-parametric Bayesian space-time regression assessed the impact of IRS and spatial autocorrelation in the odds of weekly dengue infection. About 63% of the cases clustered up to 800 m around the IC's house. Most cases were distributed in the NW-SE axis as a consequence of the spatial arrangement of blocks within the city and, possibly, the prevailing winds. Space-time analysis showed that DENV-2 infection spread rapidly, generating 18 clusters (comprising 65% of all cases), and that these clusters varied in extent as a function of their distance to the IC's residence. IRS applications had a significant protective effect in the further occurrence of dengue cases, but only when they reached coverage of 60% or more of the neighboring premises of a house. Conclusion By applying sound statistical analysis to a very detailed dataset from one of the largest outbreaks that affected the city of Cairns in recent times, we not only described the spread of dengue virus with high detail but also quantified the spatio-temporal dimension of dengue virus transmission within this complex urban environment. In areas susceptible to non-periodic dengue epidemics, effective disease prevention and control would depend on the prompt response to introduced cases. We foresee that some of the results and recommendations derived from our study may also be applicable to other areas currently affected or potentially subject to dengue

References

[1]  Rigau-Perez JG, Clark GG, Gubler DJ, Reiter P, Sanders EJ, et al. (1998) Dengue and dengue haemorrhagic fever. Lancet 352: 971–977. doi: 10.1016/S0140-6736(97)12483-7
[2]  Gubler DJ (1997) Dengue and dengue hemorragic fever: its history and resurgence as a global public health problem. In: Gubler DJ, Kuno G, editors. Dengue and dengue hemorragic fever. Wallingford: CAB International. pp. 1–22.
[3]  Gubler DJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10: 100–103. doi: 10.1016/S0966-842X(01)02288-0
[4]  Rodhain F, Rosen L (1997) Mosquito vectors and dengue virus-vector relationships. In: Gubler DJ, Kuno G, editors. Dengue and Dengue Hemorrhagic fever. New York: CAB International. pp. 61–88.
[5]  Kuno G (1997) Factors influencing the transmission of dengue virus. In: Gubler DJ, Kuno G, editors. Dengue and dengue hemorrhagic fever. Oxon, UK: CAB International. pp. 61–88.
[6]  Kuno G (1995) Review of the factors modulating dengue transmission. Epidemiol Rev 17: 321–335.
[7]  De Benedictis J, Chow-Shaffer E, Costero A, Clark GG, Edman JD, et al. (2003) Identification of the people from whom engorged Aedes aegypti took blood meals in Florida, Puerto Rico, using polymerase chain reaction-based DNA profiling. Am J Trop Med Hyg 68: 437–446.
[8]  Monath TP (1994) Dengue: The risk to developed and developing countries. Proceedings of the National Academy of Sciences of the United States of America 91: 2395–2400. doi: 10.1073/pnas.91.7.2395
[9]  Wilder-Smith A, Gubler DJ (2008) Geographic expansion of dengue: the impact of international travel. Med Clin North Am 92: 1377–1390, x. doi: 10.1016/j.mcna.2008.07.002
[10]  PDVI (2009) http://www.pdvi.org/about_dengue/GBD.asp.
[11]  Seijo A (2009) [Dengue 2009: chronology of an epidemic]. Arch Argent Pediatr 107: 387–389. doi: 10.1590/S0325-00752009000500002
[12]  Ritchie SA, Hanna JN, Hills SL, Piispanen JP, McBride WJ, et al. (2002) Dengue control in North Queensland, Australia: case recognition and selective indoor residual spraying. Dengue Bulletin 26: 7–13.
[13]  Hanna JN, Ritchie SA, Merritt AD, van den Hurk AF, Phillips DA, et al. (1998) Two contiguous outbreaks of dengue type 2 in north Queensland. Med J Aust 168: 221–225.
[14]  Hanna JN, Ritchie SA, Phillips DA, Serafin IL, Hills SL, et al. (2001) An epidemic of dengue 3 in far north Queensland, 1997–1999. Med J Aust 174: 178–182.
[15]  Hanna JN, Ritchie SA, Richards AR, Taylor CT, Pyke AT, et al. (2006) Multiple outbreaks of dengue serotype 2 in north Queensland, 2003/04. Aust N Z J Public Health 30: 220–225. doi: 10.1111/j.1467-842X.2006.tb00861.x
[16]  Moore PR, Johnson PH, Smith GA, Ritchie SA, Van Den Hurk AF (2007) Infection and dissemination of dengue virus type 2 in Aedes aegypti, Aedes albopictus, and Aedes scutellaris from the Torres Strait, Australia. J Am Mosq Control Assoc 23: 383–388. doi: 10.2987/5598.1
[17]  Hanna JN, Ritchie SA (2009) Outbreaks of dengue in north Queensland, 1990–2008. Commun Dis Intell 33: 32–33.
[18]  Ritchie SA, Long S, Smith G, Pyke A, Knox TB (2004) Entomological investigations in a focus of dengue transmission in Cairns, Queensland, Australia, by using the sticky ovitraps. J Med Entomol 41: 1–4. doi: 10.1603/0022-2585-41.1.1
[19]  Queensland HealthTPHUN, editor (2000) Dengue Fever Management Plan for North Queensland 2000–2005 [internal document]. Cairns (AUST): Queensland Government. 64 p.
[20]  Kan CC, Lee PF, Wen TH, Chao DY, Wu MH, et al. (2008) Two clustering diffusion patterns identified from the 2001–2003 dengue epidemic, Kaohsiung, Taiwan. Am J Trop Med Hyg 79: 344–352.
[21]  Neff JM, Morris L, Gonzalez-Alcover R, Coleman PH, Lyss SB, et al. (1967) Dengue fever in a Puerto Rican community. Am J Epidemiol 86: 162–184.
[22]  Morrison AC, Getis A, Santiago M, Rigau-Perez JG, Reiter P (1998) Exploratory space-time analysis of reported dengue cases during an outbreak in Florida, Puerto Rico, 1991–1992. Am J Trop Med Hyg 58: 287–298.
[23]  Rotela C, Fouque F, Lamfri M, Sabatier P, Introini V, et al. (2007) Space-time analysis of the dengue spreading dynamics in the 2004 Tartagal outbreak, Northern Argentina. Acta Trop 103: 1–13. doi: 10.1016/j.actatropica.2007.05.003
[24]  Vazquez-Prokopec GM, Stoddard ST, Paz-Soldan V, Morrison AC, Elder JP, et al. (2009) Usefulness of commercially available GPS data-loggers for tracking human movement and exposure to dengue virus. Int J Health Geogr 8: 68. doi: 10.1186/1476-072X-8-68
[25]  Mondini A, de Moraes Bronzoni RV, Nunes SH, Chiaravalloti Neto F, Massad E, et al. (2009) Spatio-temporal tracking and phylodynamics of an urban dengue 3 outbreak in Sao Paulo, Brazil. PLoS Negl Trop Dis 3: e448. doi: 10.1371/journal.pntd.0000448
[26]  Tran A, Deparis X, Dussart P, Morvan J, Rabarison P, et al. (2004) Dengue spatial and temporal patterns, French Guiana, 2001. Emerg Infect Dis 10: 615–621. doi: 10.3201/eid1004.030186
[27]  Fahrmeir L, Kneib T, Lang S (2004) Penalized structured additive regression for space-time data: A Bayesian perspective. Statistica Sinica 14: 731–761.
[28]  Taylor C, Simmons R, Smith I (2005) Development of immunoglobulin M capture enzyme-linked immunosorbent assay to differentiate human flavivirus infections occurring in Australia. Clin Diagn Lab Immunol 12: 371–374. doi: 10.1128/CDLI.12.3.371-374.2005
[29]  Warrilow D, Northill JA, Pyke A, Smith GA (2002) Single rapid TaqMan fluorogenic probe based PCR assay that detects all four dengue serotypes. J Med Virol 66: 524–528. doi: 10.1002/jmv.2176
[30]  Malcolm RL, Hanna JN, Phillips DA (1999) The timeliness of notification of clinically suspected cases of dengue imported into north Queensland. Australian and New Zealand Journal of Public Health 23: 414–417. doi: 10.1111/j.1467-842X.1999.tb01285.x
[31]  Reiter P, Gubler DJ (1997) Surveillance and control of urban dengue vectors. In: Gubler DJ, Kuno G, editors. Dengue and dengue hemorragic fever. Wallingford, UK: CAB International.
[32]  Jekel JF, Katz DL (2007) Epidemiology, biostatistics, and preventive medicine. Philadelphia: Saunders Elsevier.
[33]  Shumway RH, Stoffer DS (2006) Time series analysis and its applications: with R examples. New York: Springer.
[34]  Getis A, Franklin J (1987) 2nd-order neighborhood analysis of mapped point patterns. Ecology 68: 473–477. doi: 10.2307/1938452
[35]  Rosenberg M, Kenkel N (2004) Wavelet analysis for detecting anisotropy in point patterns. Journal of Vegetation Science 15: 277–284. doi: 10.1111/j.1654-1103.2004.tb02262.x
[36]  Knox EG (1964) The detection of space-time interactions. The Royal Statistical Society Series C-Applied Statistics 13: 25–29. doi: 10.2307/2985220
[37]  Russell RC, Webb CE, Williams CR, Ritchie SA (2005) Mark-release-recapture study to measure dispersal of the mosquito Aedes aegypti in Cairns, Queensland, Australia. Med Vet Entomol 19: 451–457. doi: 10.1111/j.1365-2915.2005.00589.x
[38]  Harrington LC, Scott TW, Lerdthusnee K, Coleman RC, Costero A, et al. (2005) Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am J Trop Med Hyg 72: 209–220.
[39]  Kneib T, Fahrmeir L (2006) Structured additive regression for categorical space-time data: A mixed model approach. Biometrics 62: 109–118. doi: 10.1111/j.1541-0420.2005.00392.x
[40]  Scott TW, Morrison AC (2008) Longitudinal field studies will guide a paradigm shift in dengue prevention. Vector-borne Diseases: Understanding the Environmental, Human Health, and Ecological Connections. Washington, DC: The National Academies Press. pp. 132–149.
[41]  Stoddard S, Morrison A, Vazquez-Prokopec G, Paz-Soldan V, Kochel T, et al. (2009) The Role of Human Movement in the Transmission of Vector-borne Pathogens. Plos NTDs e481. doi: 10.1371/journal.pntd.0000481
[42]  Deparis X, Roche C, Murgue B, Chungue E (1998) Possible dengue sequential infection: dengue spread in a neighbourhood during the 1996/97 dengue-2 epidemic in French Polynesia. Trop Med Int Health 3: 866–871. doi: 10.1046/j.1365-3156.1998.00330.x
[43]  Endy TP, Chunsuttiwat S, Nisalak A, Libraty DH, Green S, et al. (2002) Epidemiology of inapparent and symptomatic acute dengue virus infection: a prospective study of primary school children in Kamphaeng Phet, Thailand. Am J Epidemiol 156: 40–51. doi: 10.1093/aje/kwf005
[44]  Edman JD, Scott TW, Costero A, Morrison AC, Harrington LC, et al. (1998) Aedes aegypti (Diptera: Culicidae) movement influenced by availability of oviposition sites. J Med Entomol 35: 578–583.
[45]  Muir LE, Kay BH (1998) Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia. Am J Trop Med Hyg 58: 277–282.
[46]  Harrington LC, Buonaccorsi JP, Edman JD, Costero A, Kittayapong P, et al. (2001) Analysis of survival of young and old Aedes aegypti (Diptera: Culicidac) from Puerto Rico and Thailand. J Med Entomol 38: 537–547. doi: 10.1603/0022-2585-38.4.537
[47]  Vazquez-Prokopec GM, Chaves LF, Ritchie SA, Davis J, Kitron U (2010) Unforeseen costs of cutting mosquito surveillance budgets. PLoS Negl Trop Dis 4(10): e858. doi: 10.1371/journal.pntd.0000858
[48]  Pan American Health OrganizationGuidelines for prevention and control.; Organization PAH, editor (1994) Dengue and dengue hemorrhagic fever in the Americas. Washington, DC: Pan American Health Organization.
[49]  Eisen L, Lozano-Fuentes S (2009) Use of mapping and spatial and space-time modeling approaches in operational control of Aedes aegypti and dengue. PLoS Negl Trop Dis 3: e411. doi: 10.1371/journal.pntd.0000411

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133