Background Human African trypanosomiasis (HAT), also known as sleeping sickness, is a fatal parasitic disease caused by trypanosomes. Current treatment options for HAT are scarce, toxic, no longer effective, or very difficult to administer, in particular for the advanced, fatal stage of the disease (stage 2, chronic HAT). New safe, effective and easy-to-use treatments are urgently needed. Here it is shown that fexinidazole, a 2-substituted 5-nitroimidazole rediscovered by the Drugs for Neglected Diseases initiative (DNDi) after extensive compound mining efforts of more than 700 new and existing nitroheterocycles, could be a short-course, safe and effective oral treatment curing both acute and chronic HAT and that could be implemented at the primary health care level. To complete the preclinical development and meet the regulatory requirements before initiating human trials, the anti-parasitic properties and the pharmacokinetic, metabolic and toxicological profile of fexinidazole have been assessed. Methods and Findings Standard in vitro and in vivo anti-parasitic activity assays were conducted to assess drug efficacy in experimental models for HAT. In parallel, a full range of preclinical pharmacology and safety studies, as required by international regulatory guidelines before initiating human studies, have been conducted. Fexinidazole is moderately active in vitro against African trypanosomes (IC50 against laboratory strains and recent clinical isolates ranged between 0.16 and 0.93 μg/mL) and oral administration of fexinidazole at doses of 100 mg/kg/day for 4 days or 200 mg/kg/day for 5 days cured mice with acute and chronic infection respectively, the latter being a model for the advanced and fatal stage of the disease when parasites have disseminated into the brain. In laboratory animals, fexinidazole is well absorbed after oral administration and readily distributes throughout the body, including the brain. The absolute bioavailability of oral fexinidazole was 41% in mice, 30% in rats, and 10% in dogs. Furthermore, fexinidazole is rapidly metabolised in vivo to at least two biologically active metabolites (a sulfoxide and a sulfone derivative) that likely account for a significant portion of the therapeutic effect. Key pharmacokinetic parameter after oral absorption in mice for fexinidazole and its sulfoxide and sulfone metabolites are a Cmax of 500, 14171 and 13651 ng/mL respectively, and an AUC0–24 of 424, 45031 and 96286 h.ng/mL respectively. Essentially similar PK profiles were observed in rats and dogs. Toxicology studies (including safety
References
[1]
Snowden M, Green DV (2008) The impact of diversity-based, high-throughput screening on drug discovery: “chance favours the prepared mind”. Curr Opin Drug Discov Devel 11: 553–558.
[2]
Frearson JA, Collie IT (2009) HTS and hit finding in academia–from chemical genomics to drug discovery. Drug Discov Today 14: 1150-1158. Epub 2009 Sep 28: doi: 10.1016/j.drudis.2009.09.004
[3]
Noble ME, Endicott JA, Johnson LN (2004) Protein kinase inhibitors: insights into drug design from structure. Science 303: 1800–1805. doi: 10.1126/science.1095920
[4]
WHO fact sheet. 28: http://www.who.int/mediacentre/factsheet?s/fs259/en/. Accessed 2010, July.
[5]
WHO (2006) Human African trypanosomiasis (sleeping sickness): epidemiological update. Weekly Epidemiological Record 8: 71–80.
[6]
Simarro PP, Jannin J, Cattand P (2008) Eliminating human African trypanosomiasis: where do we stand and what comes next? PLoS Med 5: e55. doi: 10.1371/journal.pmed.0050055
[7]
Brun R, Blum J, Chappuis F, Burri C (2010) Human African trypanosomiasis. Lancet 375: 148–159. doi: 10.1016/S0140-6736(09)60829-1
[8]
Barrett MP, Boykin DW, Brun R, Tidwell RR (2007) Human African trypanosomiasis: pharmacological re-engagement with a neglected disease. Br J Pharmacol 152: 1155–1171. doi: 10.1038/sj.bjp.0707354
[9]
Kennedy PG (2004) Human African trypanosomiasis of the CNS: current issues and challenges. J Clin Invest 113: 496–504. doi: 10.1172/JCI21052
[10]
Legros D, Ollivier G, Gastellu-Etchegorry M, Paquet C, Burri C, et al. (2002) Treatment of human African trypanosomiasis: present situation and needs for research and development. Lancet Infect Dis 2: 437–440. doi: 10.1016/S1473-3099(02)00321-3
[11]
Robays J, Nyamowala G, Sese C, Betu Ku Mesu Kande V, Lutumba P, et al. (2008) High failure rates of melarsoprol for sleeping sickness, Democratic Republic of Congo. Emerg Infect Dis 14: 966–967. doi: 10.3201/eid1406.071266
[12]
Matovu E, Enyaru JC, Legros D, Schmid C, Seebeck T, et al. (2001) Melarsoprol refractory T. b. gambiense from Omugo, northwestern Uganda. Trop Med Int Health 6: 407–411. doi: 10.1046/j.1365-3156.2001.00712.x
[13]
Chappuis F, Udayraj N, Stietenroth K, Meussen A, Bovier PA (2005) Eflornithine is safer than melarsoprol for the treatment of second-stage Trypanosoma brucei gambiense human African trypanosomiasis. Clin Infect Dis 41: 748–751. doi: 10.1086/432576
[14]
Priotto G, Kasparian S, Mutombo W, Ngouma D, Ghorashian S, et al. (2009) Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised phase III, non-inferiority trial. Lancet 374: 56–64. doi: 10.1016/S0140-6736(09)61117-X
[15]
Opigo J, Woodrow C (2009) NECT trial: more than a small victory over sleeping sickness. Lancet 374: 7–9. doi: 10.1016/S0140-6736(09)61163-6
[16]
http://www.who.int/medicines/publication?s/essentialmedicines/updated_sixteenth_a?dult_list_en.pdf. Accessed 2010, July 28.
[17]
Chappuis F, Lima MA, Flevaud L, Ritmeijer K (2010) Human African trypanosomiasis in areas without surveillance. Emerg Infect Dis 16: 354–356. doi: 10.3201/eid1602.090967
[18]
Winkelmann E, Raether W, Gebert U, Sinharay A (1977) Chemotherapeutically active nitro compounds. 4. 5-Nitroimidazoles (Part I-IV). Arzneimittelforschung 27-28:
[19]
Marie-Daragon A, Rouillard MC, Bouteille B, Bisser S, de Albuquerque C, et al. (1994) An efficacy trial on Trypanosoma brucei brucei of molecules permeating the blood-brain barrier and of megazol. Bull Soc Pathol Exot 87: 347–352.
[20]
Bouteille B, Marie-Daragon A, Chauviere G, de Albuquerque C, Enanga B, et al. (1995) Effect of megazol on Trypanosoma brucei brucei acute and subacute infections in Swiss mice. Acta Trop 60: 73–80. doi: 10.1016/0001-706X(95)00109-R
[21]
Nesslany F, Brugier S, Mouries MA, Le Curieux F, Marzin D (2004) In vitro and in vivo chromosomal aberrations induced by megazol. Mutat Res 560: 147–158. doi: 10.1016/j.mrgentox.2004.02.013
[22]
Enanga B, Ariyanayagam MR, Stewart ML, Barrett MP (2003) Activity of megazol, a trypanocidal nitroimidazole, is associated with DNA damage. Antimicrob Agents Chemother 47: 3368–3370. doi: 10.1128/AAC.47.10.3368-3370.2003
[23]
De Meo M, Vanelle P, Bernadini E, Laget M, Maldonado J, et al. (1992) Evaluation of the mutagenic and genotoxic activities of 48 nitroimidazoles and related imidazole derivatives by the Ames test and the SOS chromotest. Environ Mol Mutagen 19: 167–181. doi: 10.1002/em.2850190212
[24]
Voogd CE (1981) On the mutagenicity of nitroimidazoles. Mutat Res 86: 243–277. doi: 10.1016/0165-1110(81)90006-3
[25]
Freeman CD, Klutman NE, Lamp KC (1997) Metronidazole. A therapeutic review and update. Drugs 54: 679–708. doi: 10.2165/00003495-199754050-00003
[26]
Winkelmann E, Raether W (1980) New chemotherapeutically active nitroimidazoles. Curr Chemother Infect Dis, Proc Int Congr Chemother 11th 2: 969–970.
[27]
Raether W, Seidenath H (1983) The activity of fexinidazole (HOE 239) against experimental infections with Trypanosoma cruzi, trichomonads and Entamoeba histolytica. Ann Trop Med Parasitol 77: 13–26.
[28]
Jennings FW, Urquhart GM (1983) The use of the 2 substituted 5-nitroimidazole, Fexinidazole (Hoe 239) in the treatment of chronic T. brucei infections in mice. Z Parasitenkd 69: 577–581. doi: 10.1007/BF00926669
[29]
R?z B, Iten M, Grether-Bühler Y, Kaminsky R, Brun R (1997) The Alamar Blue assay to determine drug sensitivity of African trypanosomes in vitro. Acta Trop 68: 139–147. doi: 10.1016/S0001-706X(97)00079-X
[30]
Baltz T, Baltz D, Giroud C, Crockett J (1985) Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J 4: 1273–1277.
[31]
Wenzler T, Boykin DW, Ismail MA, Hall JE, Tidwell RR, et al. (2009) New treatment option for second-stage African sleeping sickness: in vitro and in vivo efficacy of aza analogs of DB289. Antimicrob Agents Chemother 53: 4185–4192. doi: 10.1128/AAC.00225-09
[32]
Kaminsky R, Brun R (1998) In Vitro and In Vivo Activities of Trybizine Hydrochloride against Various Pathogenic Trypanosome Species. Antimicrob. Agents and Chemother 42: 2858–2862.
[33]
Thuita JK, Karanja SM, Wenzler T, Mdachi RE, Ngotho JM, et al. (2008) Efficacy of the diamidine DB75 and its prodrug DB289, against murine models of human African trypanosomiasis. Acta Trop 108: 6–10. doi: 10.1016/j.actatropica.2008.07.006
[34]
Obach RS, Baxter JG, Liston TE, Silber BM, Jones BC, et al. (1997) The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther 283: 46–58.
[35]
Dierks EA, Stams KR, Lim H-K, Cornelius G, Zhang H, et al. (2001) A Method for the Simultaneous Evaluation of the Activities of Seven Major Human Drug-Metabolizing Cytochrome P450s Using an in Vitro Cocktail of Probe Substrates and Fast Gradient Liquid Chromatography Tandem Mass Spectrometry. Drug Metab Dispos 29: 23–29.
[36]
Shah P, Jogani V, Bagchi T, Misra A (2006) Role of Caco-2 cell monolayers in prediction of intestinal drug absorption, Biotechnol Prog 22: 186–198. doi: 10.1021/bp050208u
[37]
Wang Q, Rager JD, Weinstein K, Kardos PS, Glenn L, et al. (2005) Evaluation of the MDR-MDCK cell line as a permeability screen for the blood-brain barrier. Int J Pharm 288: 349–359. doi: 10.1016/j.ijpharm.2004.10.007
[38]
European Agency for the Evaluation of Medicinal Products (2001) ICH Topic S 7 A. “Safety Pharmacology Studies for Human Pharmaceuticals”. ICH Harmonised Tripartite Guideline.
European Agency for the Evaluation of Medicinal Products (2005) ICH Topic S 7 B. “The nonclinical Evaluation of the Potential for delayed Ventricular Repolarization (QT Interval Prolongation) by Human Pharmaceuticals”. ICH Harmonised Tripartite Guideline.
[41]
Irwin S (1968) Comprehensive observational assessment: 1a. A systematic, quantitative procedure for assessing the behavioural and physiologic state of the mouse. Psychopharmacologia (Berl) 13: 222–257. doi: 10.1007/bf00401402
[42]
Murphy DJ (1994) Safety Pharmacology of the Respiratory System: Techniques and Study Design. Drug Dev Res 32: 237–246. doi: 10.1002/ddr.430320408
[43]
European Agency for the Evaluation of Medicinal Products (2009) ICH Topic M 3 (R2). “Non-Clinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals”.
[44]
European Agency for the Evaluation of Medicinal Products (1995) ICH Topic S 3 A. “Toxicokinetics: A Guidance for Assessing Systemic Exposure in Toxicology Studies”. ICH Harmonised Tripartite Guideline.
[45]
European Agency for the Evaluation of Medicinal Products (1994) ICH Topic S 5A Reproductive toxicology: detection of toxicity to reproduction for medicinal products including toxicity to male fertility (CPMP/ICH/386/95).
[46]
European Agency for the Evaluation of Medicinal Products (2008) ICH Topic S2 (R1). Guidance on Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use. International Conference on Harmonisation of Technical Requirements for the Registration of Pharmaceuticals for Human Use. Note for Guidance on Genotoxicity : A standard battery for genotoxicity testing of pharmaceuticals; International Conference on Harmonisation of Technical Requirements for the Registration of Pharmaceuticals for Human Use. Note for Guidance on Genotoxicity: Guidance on specific aspects of regulatory genotoxicity tests of pharmaceuticals, www.emea.europa.eu/htms/human/humanguide?lines/nonclinical.htm. Accessed 2010 July 28.
[47]
McCoy EC, Rosenkranz HS, Mermelstein R (1981) Evidence for the existence of a family of bacterial nitroreductases capable of activating nitrated polycyclics to mutagens. Environ Mutagen 3: 421–427. doi: 10.1002/em.2860030403
[48]
Purohit V, Basu AK (2000) Mutagenicity of nitroaromatic compounds. Chem Res Toxicol 13: 673–692. doi: 10.1021/tx000002x
[49]
Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res 113: 173–215. doi: 10.1016/0165-1161(83)90010-9
Krishna G, Hayashi M (2000) In vivo micronucleus assay: protocol, conduct and interpretation. Mutat Res 455: 155–166. doi: 10.1016/S0027-5107(00)00117-2
[52]
Kennelly JC, Waters R, Ashby J, Lefevre PA, Burlinson B, et al. (1993) In vivo rat liver UDS assay. In: Supplementary Mutagenicity Tests UKEMS Recommended Procedures. Kirkland DJ, Fox M editors. Cambridge: Cambridge University Press. pp 52-77:
[53]
Wardman P (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solution. J Phys Chem Ref Data 18: 1637–1755. doi: 10.1063/1.555843
[54]
Barry CE III, Boshoff HI, Dowd CS (2004) Prospects for Clinical Introduction of Nitroimidazole Antibiotics for the Treatment of Tuberculosis. Curr Pharm Des 10: 3239–3262. doi: 10.2174/1381612043383214
[55]
Wilkinson SR, Taylor MC, Horn D, Kelly JM, Cheeseman I (2008) A mechanism for cross-resistance to nifurtimox and benzidazole in trypanosomes, Proc Nat Acad Sci USA 105: 5022–5027. doi: 10.1073/pnas.0711014105
[56]
Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22: 659–661. doi: 10.1096/fj.07-9574LSF
[57]
Kirkland DJ, Aardema M, Banduhn N, Carmichael P, Fautz R, et al. (2007) In vitro approaches to develop weight of evidence (W0E) and mode of action (MoA) discussions with positive in vitro genotoxicity results. Mutagenesis 22: 161–175. doi: 10.1093/mutage/gem006
[58]
Suter W, Hartmann A, Poetter F, Sagelsdorff P, Hoffmann P (2002) Genotoxicity assessment of the antiepileptic drug AMP397, an Ames-positive aromatic nitro compound. Mutat Res 518: 181–194. doi: 10.1016/S1383-5718(02)00105-5
[59]
Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, et al. (2000) A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405: 962–966. doi: 10.1038/35016103
[60]
Matsumoto M, Hashizume H, Tomishige T, Kawasaki M, Tsubouchi H, et al. (2006) OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med 3: e466. doi: 10.1371/journal.pmed.0030466
[61]
Benfenati E, Benigni R, Demarini DM, Helma C, Kirkland D, et al. (2009) Predictive models for carcinogenicity and mutagenicity frameworks, state-of-the-art and perspectives. J Environ Sci Health C Eviron Carcinog Ecotoxicol Rev 27: 57–90.
[62]
www.clinicaltrials.gov, Identifier: NCT00982904. Accessed 2010 July 28.