全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Coinfection with Different Trypanosoma cruzi Strains Interferes with the Host Immune Response to Infection

DOI: 10.1371/journal.pntd.0000846

Full-Text   Cite this paper   Add to My Lib

Abstract:

A century after the discovery of Trypanosoma cruzi in a child living in Lassance, Minas Gerais, Brazil in 1909, many uncertainties remain with respect to factors determining the pathogenesis of Chagas disease (CD). Herein, we simultaneously investigate the contribution of both host and parasite factors during acute phase of infection in BALB/c mice infected with the JG and/or CL Brener T. cruzi strains. JG single infected mice presented reduced parasitemia and heart parasitism, no mortality, levels of pro-inflammatory mediators (TNF-α, CCL2, IL-6 and IFN-γ) similar to those found among na?ve animals and no clinical manifestations of disease. On the other hand, CL Brener single infected mice presented higher parasitemia and heart parasitism, as well as an increased systemic release of pro-inflammatory mediators and higher mortality probably due to a toxic shock-like systemic inflammatory response. Interestingly, coinfection with JG and CL Brener strains resulted in intermediate parasitemia, heart parasitism and mortality. This was accompanied by an increase in the systemic release of IL-10 with a parallel increase in the number of MAC-3+ and CD4+ T spleen cells expressing IL-10. Therefore, the endogenous production of IL-10 elicited by coinfection seems to be crucial to counterregulate the potentially lethal effects triggered by systemic release of pro-inflammatory mediators induced by CL Brener single infection. In conclusion, our results suggest that the composition of the infecting parasite population plays a role in the host response to T. cruzi in determining the severity of the disease in experimentally infected BALB/c mice. The combination of JG and CL Brener was able to trigger both protective inflammatory immunity and regulatory immune mechanisms that attenuate damage caused by inflammation and disease severity in BALB/c mice.

References

[1]  WHO (2007) Global Plan to Combat Neglected Diseases 2008–2015. WHO, Geneva, Switzerland, WHO/CDS/NTD/2007.
[2]  Dias JCP (1992) Epidemiology of Chagas' disease. In: Wendel S, Brener Z, Camargo ME, Rassi A, editors. Chagas' Disease (American Trypanosomiasis): Its Impact on Transfusion and Clinical Medicine. S?o Paulo, Brazil: ISBT. pp. 49–80.
[3]  Andrade LO, Machado CR, Chiari E, Pena SD, Macedo AM (1999) Differential tissue distribution of diverse clones of Trypanosoma cruzi in infected mice. Mol Biochem Parasitol 100: 163–172. doi: 10.1016/S0166-6851(99)90035-X
[4]  Andrade LO, Machado CR, Chiari E, Pena SD, Macedo AM (2002) Trypanosoma cruzi: role of host genetic background in the differential tissue distribution of parasite clonal populations. Exp Parasitol 100: 269–275. doi: 10.1016/S0014-4894(02)00024-3
[5]  Costa GC, da Costa Rocha MO, Moreira PR, Menezes CA, Silva MR, et al. (2009) Functional IL-10 gene polymorphism is associated with Chagas disease cardiomyopathy. J Infect Dis 199: 451–454. doi: 10.1086/596061
[6]  Dutra WO, Gollob KJ (2008) Current concepts in immunoregulation and pathology of human Chagas disease. Curr Opin Infect Dis 21: 287–292. doi: 10.1097/QCO.0b013e3282f88b80
[7]  Dutra WO, Menezes CA, Villani FN, da Costa GC, da Silveira AB, et al. (2009) Cellular and genetic mechanisms involved in the generation of protective and pathogenic immune responses in human Chagas disease. Mem Inst Oswaldo Cruz 104: Suppl 1208–218. doi: 10.1590/S0074-02762009000900027
[8]  Franco DJ, Vago AR, Chiari E, Meira FC, Galvao LM, et al. (2003) Trypanosoma cruzi: mixture of two populations can modify virulence and tissue tropism in rat. Exp Parasitol 104: 54–61. doi: 10.1016/S0014-4894(03)00119-X
[9]  Freitas JM, Andrade LO, Pires SF, Lima R, Chiari E, et al. (2009) The MHC gene region of murine hosts influences the differential tissue tropism of infecting Trypanosoma cruzi strains. PLoS One 4: e5113. doi: 10.1371/journal.pone.0005113
[10]  Ramasawmy R, Cunha-Neto E, Fae KC, Muller NG, Cavalcanti VL, et al. (2006) BAT1, a putative anti-inflammatory gene, is associated with chronic Chagas cardiomyopathy. J Infect Dis 193: 1394–1399. doi: 10.1086/503368
[11]  Macedo AM, Machado CR, Oliveira RP, Pena SD (2004) Trypanosoma cruzi: genetic structure of populations and relevance of genetic variability to the pathogenesis of Chagas disease. Mem Inst Oswaldo Cruz 99: 1–12. doi: 10.1590/S0074-02762004000100001
[12]  Spitzner FL, Freitas JM, Macedo AM, Ornelas Toledo MJ, Araújo SM, et al. (2007) Trypanosoma cruzi-triatomine associations and the presence of mixed infections in single triatomine bugs in Paraná state, Brazil. Acta Parasitologica 52: 74–81. doi: 10.2478/s11686-007-0005-4
[13]  Tibayrenc M, Breniere F, Barnabe C, Lemesre JL, Echalar L, et al. (1985) Isozymic variability of Trypanosoma cruzi: biological and epidemiological significance. Ann Soc Belg Med Trop 65: Suppl 159–61.
[14]  Vago AR, Andrade LO, Leite AA, d'Avila Reis D, Macedo AM, et al. (2000) Genetic characterization of Trypanosoma cruzi directly from tissues of patients with chronic Chagas disease: differential distribution of genetic types into diverse organs. Am J Pathol 156: 1805–1809. doi: 10.1016/S0002-9440(10)65052-3
[15]  Mantilla JC, Zafra GA, Macedo AM, González CI (2010) Mixed infection of Trypanosoma cruzi I and II in a Colombian cardiomyopathic patient. Hum Pathol 41: 610–613. doi: 10.1016/j.humpath.2009.11.005
[16]  Souza PE, Rocha MO, Rocha-Vieira E, Menezes CA, Chaves AC, et al. (2004) Monocytes from patients with indeterminate and cardiac forms of Chagas' disease display distinct phenotypic and functional characteristics associated with morbidity. Infect Immun 72: 5283–5291. doi: 10.1128/IAI.72.9.5283-5291.2004
[17]  Ramasawmy R, Fae KC, Cunha-Neto E, Borba SC, Ianni B, et al. (2008) Variants in the promoter region of IKBL/NFKBIL1 gene may mark susceptibility to the development of chronic Chagas' cardiomyopathy among Trypanosoma cruzi-infected individuals. Mol Immunol 45: 283–288. doi: 10.1016/j.molimm.2007.04.015
[18]  Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, et al. (2009) A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104: 1051–1054. doi: 10.1590/S0074-02762009000700021
[19]  Oliveira RP, Broude NE, Macedo AM, Cantor CR, Smith CL, et al. (1998) Probing the genetic population structure of Trypanosoma cruzi with polymorphic microsatellites. Proc Natl Acad Sci U S A 95: 3776–3780. doi: 10.1073/pnas.95.7.3776
[20]  Valadares HM, Pimenta JR, de Freitas JM, Duffy T, Bartholomeu DC, et al. (2008) Genetic profiling of Trypanosoma cruzi directly in infected tissues using nested PCR of polymorphic microsatellites. Int J Parasitol 38: 839–850. doi: 10.1016/j.ijpara.2007.10.017
[21]  Souto RP, Fernandes O, Macedo AM, Campbell DA, Zingales B (1996) DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol Biochem Parasitol 83: 141–152. doi: 10.1016/S0166-6851(96)02755-7
[22]  de Freitas JM, Augusto-Pinto L, Pimenta JR, Bastos-Rodrigues L, Gon?alves VF, et al. (2006) Ancestral genomes, sex, and the population structure of Trypanosoma cruzi. PLoS Pathog 2: e24. doi: 10.1371/journal.ppat.0020024
[23]  Brener Z (1962) Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Rev Inst Med Trop Sao Paulo 4: 389–396.
[24]  Taylor MJ, Hughes BJ, Sharma RP (1987) Dose and time related effects of T-2 toxin on mitogenic response of murine splenic cells in vitro. Int J Immunopharmacol 9: 107–113. doi: 10.1016/0192-0561(87)90116-0
[25]  Hoft DF, Lynch RG, Kirchhoff LV (1993) Kinetic analysis of antigen-specific immune responses in resistant and susceptible mice during infection with Trypanosoma cruzi. J Immunol 151: 7038–7047.
[26]  Roggero E, Perez A, Tamae-Kakazu M, Piazzon I, Nepomnaschy I, et al. (2002) Differential susceptibility to acute Trypanosoma cruzi infection in BALB/c and C57BL/6 mice is not associated with a distinct parasite load but cytokine abnormalities. Clin Exp Immunol 128: 421–428. doi: 10.1046/j.1365-2249.2002.01874.x
[27]  Martins HR, Silva RM, Valadares HM, Toledo MJ, Veloso VM, et al. (2007) Impact of dual infections on chemotherapeutic efficacy in BALB/c mice infected with major genotypes of Trypanosoma cruzi. Antimicrob Agents Chemother 51: 3282–3289. doi: 10.1128/AAC.01590-06
[28]  Wrightsman R, Krassner S, Watson J (1982) Genetic control of responses to Trypanosoma cruzi in mice: multiple genes influencing parasitemia and survival. Infect Immun 36: 637–644.
[29]  Marcondes MC, Borelli P, Yoshida N, Russo M (2000) Acute Trypanosoma cruzi infection is associated with anemia, thrombocytopenia, leukopenia, and bone marrow hypoplasia: reversal by nifurtimox treatment. Microbes Infect 2: 347–352. doi: 10.1016/S1286-4579(00)00333-6
[30]  Andrade LO, Andrews NW (2005) The Trypanosoma cruzi-host-cell interplay: location, invasion, retention. Nat Rev Microbiol 3: 819–823. doi: 10.1038/nrmicro1249
[31]  Gazzinelli RT, Denkers EY (2006) Protozoan encounters with Toll-like receptor signalling pathways: implications for host parasitism. Nat Rev Immunol 6: 895–906. doi: 10.1038/nri1978
[32]  Tarleton RL (2007) Immune system recognition of Trypanosoma cruzi. Curr Opin Immunol 19: 430–434. doi: 10.1016/j.coi.2007.06.003
[33]  Trinchieri G, Sher A (2007) Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 7: 179–190. doi: 10.1038/nri2038
[34]  Holscher C, Mohrs M, Dai WJ, Kohler G, Ryffel B, et al. (2000) Tumor necrosis factor alpha-mediated toxic shock in Trypanosoma cruzi-infected interleukin 10-deficient mice. Infect Immun 68: 4075–4083. doi: 10.1128/IAI.68.7.4075-4083.2000
[35]  Truyens C, Torrico F, Angelo-Barrios A, Lucas R, Heremans H, et al. (1995) The cachexia associated with Trypanosoma cruzi acute infection in mice is attenuated by anti-TNF-alpha, but not by anti-IL-6 or anti-IFN-gamma antibodies. Parasite Immunol 17: 561–568. doi: 10.1111/j.1365-3024.1995.tb00999.x
[36]  Abrahamsohn IA, Coffman RL (1996) Trypanosoma cruzi: IL-10, TNF, IFN-gamma, and IL-12 regulate innate and acquired immunity to infection. Exp Parasitol 84: 231–244. doi: 10.1006/expr.1996.0109
[37]  Guedes PM, Veloso VM, Afonso LC, Calliari MV, Carneiro CM, et al. (2009) Development of chronic cardiomyopathy in canine Chagas disease correlates with high IFN-gamma, TNF-alpha, and low IL-10 production during the acute infection phase. Vet Immunol Immunopathol 130: 43–52. doi: 10.1016/j.vetimm.2009.01.004
[38]  Niikura M, Kamiya S, Nakane A, Kita K, Kiabyashi F (2010) IL-10 plays a crucial role for the protection of experimental cerebral malaria by co-infection with non-lethal malaria parasites. Int J Parasitol 40: 101–108. doi: 10.1016/j.ijpara.2009.08.009
[39]  Paiva CN, Figueiredo RT, Kroll-Palhares K, Silva AA, Silverio JC, et al. (2009) CCL2/MCP-1 controls parasite burden, cell infiltration, and mononuclear activation during acute Trypanosoma cruzi infection. J Leukoc Biol 86: 1239–1246. doi: 10.1189/jlb.0309187

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133