全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

RNA Interference in Schistosoma mansoni Schistosomula: Selectivity, Sensitivity and Operation for Larger-Scale Screening

DOI: 10.1371/journal.pntd.0000850

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The possible emergence of resistance to the only available drug for schistosomiasis spurs drug discovery that has been recently incentivized by the availability of improved transcriptome and genome sequence information. Transient RNAi has emerged as a straightforward and important technique to interrogate that information through decreased or loss of gene function and identify potential drug targets. To date, RNAi studies in schistosome stages infecting humans have focused on single (or up to 3) genes of interest. Therefore, in the context of standardizing larger RNAi screens, data are limited on the extent of possible off-targeting effects, gene-to-gene variability in RNAi efficiency and the operational capabilities and limits of RNAi. Methodology/Principal Findings We investigated in vitro the sensitivity and selectivity of RNAi using double-stranded (ds)RNA (approximately 500 bp) designed to target 11 Schistosoma mansoni genes that are expressed in different tissues; the gut, tegument and otherwise. Among the genes investigated were 5 that had been previously predicted to be essential for parasite survival. We employed mechanically transformed schistosomula that are relevant to parasitism in humans, amenable to screen automation and easier to obtain in greater numbers than adult parasites. The operational parameters investigated included defined culture media for optimal parasite maintenance, transfection strategy, time- and dose- dependency of RNAi, and dosing limits. Of 7 defined culture media tested, Basch Medium 169 was optimal for parasite maintenance. RNAi was best achieved by co-incubating parasites and dsRNA (standardized to 30 μg/ml for 6 days); electroporation provided no added benefit. RNAi, including interference of more than one transcript, was selective to the gene target(s) within the pools of transcripts representative of each tissue. Concentrations of dsRNA above 90 μg/ml were directly toxic. RNAi efficiency was transcript-dependent (from 40 to >75% knockdown relative to controls) and this may have contributed to the lack of obvious phenotypes observed, even after prolonged incubations of 3 weeks. Within minutes of their mechanical preparation from cercariae, schistosomula accumulated fluorescent macromolecules in the gut indicating that the gut is an important route through which RNAi is expedited in the developing parasite. Conclusions Transient RNAi operates gene-selectively in S. mansoni newly transformed schistosomula yet the sensitivity of individual gene targets varies. These findings and the operational parameters

References

[1]  Hotez PJ, Fenwick A, Savioli L, Molyneux DH (2009) Rescuing the bottom billion through control of neglected tropical diseases. Lancet 373: 1570–1575. doi: 10.1016/S0140-6736(09)60233-6
[2]  Vieira P, Miranda HP, Cerqueira M, Delgado Mde L, Coelho H, et al. (2007) Latent schistosomiasis in Portuguese soldiers. Mil Med 172: 144–146.
[3]  Bell RM, Daly J, Kanengoni E, Jones JJ (1973) The effects of endemic schistosomiasis and of hycanthone on the mental ability of African school children. Trans R Soc Trop Med Hyg 67: 694–701. doi: 10.1016/0035-9203(73)90040-0
[4]  Gryseels B, Polman K, Clerinx J, Kestens L (2006) Human schistosomiasis. Lancet 368: 1106–1118. doi: 10.1016/S0140-6736(06)69440-3
[5]  Hotez PJ, Fenwick A, Kjetland EF (2009) Africa's 32 Cents Solution for HIV/AIDS. PLoS Negl Trop Dis 3: e430. doi: 10.1371/journal.pntd.0000430
[6]  Jukes MC, Nokes CA, Alcock KJ, Lambo JK, Kihamia C, et al. (2002) Heavy schistosomiasis associated with poor short-term memory and slower reaction times in Tanzanian schoolchildren. Trop Med Int Health 7: 104–117. doi: 10.1046/j.1365-3156.2002.00843.x
[7]  Wu XH, Wang TP, Lu DB, Hu HT, Gao ZB, et al. (2002) Studies of impact on physical fitness and working capacity of patients with advanced Schistosomiasis japonica in Susong County, Anhui Province. Acta Trop 82: 247–252. doi: 10.1016/S0001-706X(02)00016-5
[8]  Badawi AF, Mostafa MH, Probert A, O'Connor PJ (1995) Role of schistosomiasis in human bladder cancer: evidence of association, aetiological factors, and basic mechanisms of carcinogenesis. Eur J Cancer Prev 4: 45–59. doi: 10.1097/00008469-199502000-00004
[9]  Rollinson D (2009) A wake up call for urinary schistosomiasis: reconciling research effort with public health importance. Parasitology 136: 1593–1610. doi: 10.1017/S0031182009990552
[10]  Kjetland EF, Ndhlovu PD, Gomo E, Mduluza T, Midzi N, et al. (2006) Association between genital schistosomiasis and HIV in rural Zimbabwean women. AIDS 20: 593–600. doi: 10.1097/01.aids.0000210614.45212.0a
[11]  Caffrey CR (2007) Chemotherapy of schistosomiasis: present and future. Current Opinion in Chemical Biology 11: 433–439. doi: 10.1016/j.cbpa.2007.05.031
[12]  Cioli D, Pica-Mattoccia L (2003) Praziquantel. Parasitol Res 90: Supp 1S3–9. doi: 10.1007/s00436-002-0751-z
[13]  Doenhoff MJ, Pica-Mattoccia L (2006) Praziquantel for the treatment of schistosomiasis: its use for control in areas with endemic disease and prospects for drug resistance. Expert Rev Anti Infect Ther 4: 199–210. doi: 10.1586/14787210.4.2.199
[14]  Doenhoff MJ, Hagan P, Cioli D, Southgate V, Pica-Mattoccia L, et al. (2009) Praziquantel: its use in control of schistosomiasis in sub-Saharan Africa and current research needs. Parasitology 136: 1825–1835. doi: 10.1017/S0031182009000493
[15]  Botros S, Sayed H, Amer N, El-Ghannam M, Bennett JL, et al. (2005) Current status of sensitivity to praziquantel in a focus of potential drug resistance in Egypt. Int J Parasitol 35: 787–791. doi: 10.1016/j.ijpara.2005.02.005
[16]  Melman SD, Steinauer ML, Cunningham C, Kubatko LS, Mwangi IN, et al. (2009) Reduced susceptibility to praziquantel among naturally occurring Kenyan isolates of Schistosoma mansoni. PLoS Negl Trop Dis 3: e504. doi: 10.1371/journal.pntd.0000504
[17]  Smits HL (2009) Prospects for the control of neglected tropical diseases by mass drug administration. Expert Review of Anti-infective Therapy 7: 37–56. doi: 10.1586/14787210.7.1.37
[18]  Brady MA, Hooper PJ, Ottesen EA (2006) Projected benefits from integrating NTD programs in sub-Saharan Africa. Trends Parasitol 22: 285–291. doi: 10.1016/j.pt.2006.05.007
[19]  Hotez PJ, Molyneux DH, Fenwick A, Ottesen E, Ehrlich Sachs S, et al. (2006) Incorporating a rapid-impact package for neglected tropical diseases with programs for HIV/AIDS, tuberculosis, and malaria. PLoS Med 3: e102. doi: 10.1371/journal.pmed.0030102
[20]  Lammie PJ, Fenwick A, Utzinger J (2006) A blueprint for success: integration of neglected tropical disease control programmes. Trends Parasitol 22: 313–321. doi: 10.1016/j.pt.2006.05.009
[21]  Molyneux DH, Hotez PJ, Fenwick A (2005) “Rapid-impact interventions”: how a policy of integrated control for Africa's neglected tropical diseases could benefit the poor. PLoS Med 2: e336. doi: 10.1371/journal.pmed.0020336
[22]  Utzinger J, Raso G, Brooker S, De Savigny D, Tanner M, et al. (2009) Schistosomiasis and neglected tropical diseases: towards integrated and sustainable control and a word of caution. Parasitology 136: 1859–1874. doi: 10.1017/S0031182009991600
[23]  Abdul-Ghani RA, Loutfy N, Hassan A (2009) Experimentally promising antischistosomal drugs: a review of some drug candidates not reaching the clinical use. Parasitol Res 105: 899–906. doi: 10.1007/s00436-009-1546-2
[24]  Abdulla MH, Lim KC, Sajid M, McKerrow JH, Caffrey CR (2007) Schistosomiasis mansoni: novel chemotherapy using a cysteine protease inhibitor. PLoS Med 4: e14. doi: 10.1371/journal.pmed.0040014
[25]  Corrêa Soares JB, Menezes D, Vannier-Santos MA, Ferreira-Pereira A, Almeida GT, et al. (2009) Interference with hemozoin formation represents an important mechanism of schistosomicidal action of antimalarial quinoline methanols. PLoS Negl Trop Dis 3: e477. doi: 10.1371/journal.pntd.0000477
[26]  Keiser J, Utzinger J (2007) Advances in the discovery and development of trematocidal drugs. Expert Opin Drug Discov 2: Suppl. 1S9–S23. doi: 10.1517/17460441.2.s1.s9
[27]  McManus DP, Loukas A (2008) Current status of vaccines for schistosomiasis. Clin Microbiol Rev 21: 225–242. doi: 10.1128/CMR.00046-07
[28]  Fitzpatrick JM, Peak E, Perally S, Chalmers IW, Barrett J, et al. (2009) Anti-schistosomal intervention targets identified by lifecycle transcriptomic analyses. PLoS Negl Trop Dis 3: e543. doi: 10.1371/journal.pntd.0000543
[29]  Gobert GN, Moertel L, Brindley PJ, McManus DP (2009) Developmental gene expression profiles of the human pathogen Schistosoma japonicum. BMC Genomics 10: 128. doi: 10.1186/1471-2164-10-128
[30]  Jolly ER, Chin CS, Miller S, Baghat MM, Lim KC, et al. (2007) Gene expression patterns during adaptation of a parasite helminth to different environmental niches. Genome Biol 8: R65. doi: 10.1186/gb-2007-8-4-r65
[31]  Liu F, Lu J, Hu W, Wang SY, Cui SJ, et al. (2006) New perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum. PLoS Pathog 2: e29. doi: 10.1371/journal.ppat.0020029
[32]  Oliveira G, Franco G, Verjovski-Almeida S (2008) The Brazilian contribution to the study of the Schistosoma mansoni transcriptome. Acta Trop 108: 179–182. doi: 10.1016/j.actatropica.2008.04.022
[33]  Verjovski-Almeida S, DeMarco R, Martins EA, Guimar?es PE, Ojopi EP, et al. (2003) Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni. Nat Genet 35: 148–157. doi: 10.1038/ng1237
[34]  Verjovski-Almeida S, Venancio TM, Oliveira KC, Almeida GT, Demarco R (2007) Use of a 44k oligoarray to explore the transcriptome of Schistosoma mansoni adult worms. Exp Parasitol 117: 236–245. doi: 10.1016/j.exppara.2007.04.005
[35]  Williams DL, Sayed AA, Bernier J, Birkeland SR, Cipriano MJ, et al. (2007) Profiling Schistosoma mansoni development using serial analysis of gene expression (SAGE). Exp Parasitol 117: 246–258. doi: 10.1016/j.exppara.2007.05.001
[36]  Hu W, Yan Q, Shen DK, Liu F, Zhu ZD, et al. (2003) Evolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource. Nat Genet 35: 139–147. doi: 10.1038/ng1236
[37]  Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, et al. (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460: 352–358. doi: 10.1038/nature08160
[38]  Liu F, Zhou Y, Wang ZQ, Lu G, Zheng H, et al. (2009) The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460: 345–351. doi: 10.1038/nature08140
[39]  Tsai I, Otto TD, Berriman M (2010) Improving draft assemblies by iterative mapping and assembly of short reads to eliminate gaps. Genome Biology 11: R41. doi: 10.1186/gb-2010-11-4-r41
[40]  Liu F, Chen P, Cui SJ, Wang ZQ, Han ZG (2008) SjTPdb: integrated transcriptome and proteome database and analysis platform for Schistosoma japonicum. BMC Genomics 9: 304. doi: 10.1186/1471-2164-9-304
[41]  Zerlotini A, Heiges M, Wang H, Moraes RL, Dominitini AJ, et al. (2009) SchistoDB: a Schistosoma mansoni genome resource. Nucleic Acids Res 37: D579–582. doi: 10.1093/nar/gkn681
[42]  Agüero F, Al-Lazikani B, Aslett M, Berriman M, Buckner FS, et al. (2008) Genomic-scale prioritization of drug targets: the TDR Targets database. Nat Rev Drug Discov 7: 900–907. doi: 10.1038/nrd2684
[43]  Beckstette M, Mail?nder JT, Marh?fer RJ, Sczyrba A, Ohlebusch E, Giegerich R, Selzer PM (2004) Genlight: interactive high-throughput sequence analysis and comparative genomics. Journal of Integrative Bioinformatics 1:
[44]  Margulies EH, Birney E (2008) Approaches to comparative sequence analysis: towards a functional view of vertebrate genomes. Nat Rev Genet 9: 303–313. doi: 10.1038/nrg2185
[45]  Ptacek T, Sell SM (2005) A tiered approach to comparative genomics. Brief Funct Genomic Proteomic 4: 178–185. doi: 10.1093/bfgp/4.2.178
[46]  Caffrey CR, Rohwer A, Oellien F, Marh?fer RJ, Braschi S, et al. (2009) A comparative chemogenomics strategy to predict potential drug targets in the metazoan pathogen, Schistosoma mansoni. PLoS ONE 4: e4413. doi: 10.1371/journal.pone.0004413
[47]  Brindley PJ, Pearce EJ (2007) Genetic manipulation of schistosomes. Int J Parasitol 37: 465–473. doi: 10.1016/j.ijpara.2006.12.012
[48]  Dvo?ák J, Beckmann S, Lim KC, Engel JC, Grevelding CG, et al. (2010) Biolistic transformation of Schistosoma mansoni: Studies with modified reporter-gene constructs containing regulatory regions of protease genes. Mol Biochem Parasitol 170: 37–40. doi: 10.1016/j.molbiopara.2009.11.001
[49]  Grevelding CG (2006) Transgenic flatworms. In: Maule AGMNJ, editor. Parasitic flatworms: molecular biology, biochemistry, immunology and physiology. Wallingford: CAB International. pp. 149–173.
[50]  Mann VH, Morales ME, Kines KJ, Brindley PJ (2008) Transgenesis of schistosomes: approaches employing mobile genetic elements. Parasitology 135: 141–153. doi: 10.1017/S0031182007003824
[51]  Boyle JP, Wu XJ, Shoemaker CB, Yoshino TP (2003) Using RNA interference to manipulate endogenous gene expression in Schistosoma mansoni sporocysts. Mol Biochem Parasitol 128: 205–215. doi: 10.1016/S0166-6851(03)00078-1
[52]  Skelly PJ, Da'dara A, Harn DA (2003) Suppression of cathepsin B expression in Schistosoma mansoni by RNA interference. Int J Parasitol 33: 363–369. doi: 10.1016/S0020-7519(03)00030-4
[53]  Correnti JM, Brindley PJ, Pearce EJ (2005) Long-term suppression of cathepsin B levels by RNA interference retards schistosome growth. Mol Biochem Parasitol 143: 209–215. doi: 10.1016/j.molbiopara.2005.06.007
[54]  Delcroix M, Sajid M, Caffrey CR, Lim KC, Dvo?ák J, et al. (2006) A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J Biol Chem 281: 39316–39329. doi: 10.1074/jbc.M607128200
[55]  Morales ME, Rinaldi G, Gobert GN, Kines KJ, Tort JF, et al. (2008) RNA interference of Schistosoma mansoni cathepsin D, the apical enzyme of the hemoglobin proteolysis cascade. Mol Biochem Parasitol 157: 160–168. doi: 10.1016/j.molbiopara.2007.10.009
[56]  Rinaldi G, Morales ME, Alrefaei YN, Cancela M, Castillo E, et al. (2009) RNA interference targeting leucine aminopeptidase blocks hatching of Schistosoma mansoni eggs. Mol Biochem Parasitol 167: 118–126. doi: 10.1016/j.molbiopara.2009.05.002
[57]  Swierczewski BE, Davies SJ (2009) A schistosome cAMP-dependent protein kinase catalytic subunit is essential for parasite viability. PLoS Negl Trop Dis 3: e505. doi: 10.1371/journal.pntd.0000505
[58]  Osman A, Niles EG, Verjovski-Almeida S, LoVerde PT (2006) Schistosoma mansoni TGF-beta receptor II: role in host ligand-induced regulation of a schistosome target gene. PLoS Pathog 2: e54. doi: 10.1371/journal.ppat.0020054
[59]  Faghiri Z, Skelly PJ (2009) The role of tegumental aquaporin from the human parasitic worm, Schistosoma mansoni, in osmoregulation and drug uptake. FASEB J 23: 2780–2789. doi: 10.1096/fj.09-130757
[60]  Krautz-Peterson G, Simoes M, Faghiri Z, Ndegwa D, Oliveira G, et al. (2010) Suppressing glucose transporter gene expression in schistosomes impairs parasite feeding and decreases survival in the mammalian host. PLoS Pathog 6: e1000932. doi: 10.1371/journal.ppat.1000932
[61]  Tran MH, Freitas TC, Cooper L, Gaze S, Gatton ML, et al. (2010) Suppression of mRNAs encoding tegument tetraspanins from Schistosoma mansoni results in impaired tegument turnover. PLoS Pathog 6: e1000840. doi: 10.1371/journal.ppat.1000840
[62]  Kumagai T, Osada Y, Ohta N, Kanazawa T (2009) Peroxiredoxin-1 from Schistosoma japonicum functions as a scavenger against hydrogen peroxide but not nitric oxide. Mol Biochem Parasitol 164: 26–31. doi: 10.1016/j.molbiopara.2008.11.002
[63]  Kuntz AN, Davioud-Charvet E, Sayed AA, Califf LL, Dessolin J, et al. (2007) Thioredoxin glutathione reductase from Schistosoma mansoni: an essential parasite enzyme and a key drug target. PLoS Med 4: e206. doi: 10.1371/journal.pmed.0040206
[64]  Gomes MS, Cabral FJ, Jannotti-Passos LK, Carvalho O, Rodrigues V, et al. (2009) Preliminary analysis of miRNA pathway in Schistosoma mansoni. Parasitol Int 58: 61–68. doi: 10.1016/j.parint.2008.10.002
[65]  Krautz-Peterson G, Bhardwaj R, Faghiri Z, Tararam CA, Skelly PJ (2009) RNA interference in schistosomes: machinery and methodology. Parasitology 1–11. doi: 10.1017/s0031182009991168
[66]  Krautz-Peterson G, Skelly PJ (2008) Schistosoma mansoni: the dicer gene and its expression. Exp Parasitol 118: 122–128. doi: 10.1016/j.exppara.2007.06.013
[67]  Hannon GJ, Rossi JJ (2004) Unlocking the potential of the human genome with RNA interference. Nature 431: 371–378. doi: 10.1038/nature02870
[68]  Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, et al. (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21: 635–637. doi: 10.1038/nbt831
[69]  Kulkarni MM, Booker M, Silver SJ, Friedman A, Hong P, et al. (2006) Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nat Methods 3: 833–838. doi: 10.1038/nmeth935
[70]  Ma Y, Creanga A, Lum L, Beachy PA (2006) Prevalence of off-target effects in Drosophila RNA interference screens. Nature 443: 359–363. doi: 10.1038/nature05179
[71]  Sarov M, Stewart AF (2005) The best control for the specificity of RNAi. Trends Biotechnol 23: 446–448. doi: 10.1016/j.tibtech.2005.06.007
[72]  Sudbery I, Enright AJ, Fraser AG, Dunham I (2010) Systematic analysis of off-target effects in an RNAi screen reveals microRNAs affecting sensitivity to TRAIL-induced apoptosis. BMC Genomics 11: 175. doi: 10.1186/1471-2164-11-175
[73]  Fedorov Y, Anderson EM, Birmingham A, Reynolds A, Karpilow J, et al. (2006) Off-target effects by siRNA can induce toxic phenotype. RNA 12: 1188–1196. doi: 10.1261/rna.28106
[74]  de Moraes Mour?o M, Dinguirard N, Franco GR, Yoshino TP (2009) Phenotypic screen of early-developing larvae of the blood fluke, Schistosoma mansoni, using RNA interference. PLoS Negl Trop Dis 3: e502. doi: 10.1371/journal.pntd.0000502
[75]  Mour?o MM, Dinguirard N, Franco GR, Yoshino TP (2009) Correction: phenotypic screen of early-developing larvae of the blood fluke, Schistosoma mansoni, using RNA interference. PLoS Negl Trop Dis 3: doi: 10.1371/journal.pntd.0000502
[76]  Abdulla MH, Ruelas DS, Wolff B, Snedecor J, Lim KC, et al. (2009) Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening. PLoS Negl Trop Dis 3: e478. doi: 10.1371/journal.pntd.0000478
[77]  Colley DG, Wikel SK (1974) Schistosoma mansoni: simplified method for the production of schistosomules. Exp Parasitol 35: 44–51. doi: 10.1016/0014-4894(74)90005-8
[78]  Basch PF (1981) Cultivation of Schistosoma mansoni in vitro. I. Establishment of cultures from cercariae and development until pairing. J Parasitol 67: 179–185. doi: 10.2307/3280632
[79]  Caffrey CR, McKerrow JH, Salter JP, Sajid M (2004) Blood ‘n’ guts: an update on schistosome digestive peptidases. Trends Parasitol 20: 241–248. doi: 10.1016/j.pt.2004.03.004
[80]  Braschi S, Wilson RA (2006) Proteins exposed at the adult schistosome surface revealed by biotinylation. Mol Cell Proteomics 5: 347–356. doi: 10.1074/mcp.M500287-MCP200
[81]  Tararam CA, Farias LP, Wilson RA, Leite LC (2010) Schistosoma mansoni Annexin 2: Molecular characterization and immunolocalization. Exp Parasitol 126: 146–155. doi: 10.1016/j.exppara.2010.04.008
[82]  Caffrey CR, Salter JP, Lucas KD, Khiem D, Hsieh I, et al. (2002) SmCB2, a novel tegumental cathepsin B from adult Schistosoma mansoni. Mol Biochem Parasitol 121: 49–61. doi: 10.1016/S0166-6851(02)00022-1
[83]  Rescher U, Gerke V (2004) Annexins-unique membrane binding proteins with diverse functions. J Cell Sci 117: 2631–2639. doi: 10.1242/jcs.01245
[84]  Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, et al. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22: 1567–1572. doi: 10.1038/nbt1037
[85]  Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132: 365–386. doi: 10.1385/1-59259-192-2:365
[86]  Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1: 1559–1582. doi: 10.1038/nprot.2006.236
[87]  Bookout AL, Mangelsdorf DJ (2003) Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nucl Recept Signal 1: e012. doi: 10.1621/nrs.01012
[88]  Le TH, Blair D, Agatsuma T, Humair PF, Campbell NJ, et al. (2000) Phylogenies inferred from mitochondrial gene orders-a cautionary tale from the parasitic flatworms. Mol Biol Evol 17: 1123–1125. doi: 10.1093/oxfordjournals.molbev.a026393
[89]  Dvo?ák J, Mashiyama ST, Sajid M, Braschi S, Delcroix M, et al. (2009) SmCL3, a gastrodermal cysteine protease of the human blood fluke Schistosoma mansoni. PLoS Negl Trop Dis 3: e449. doi: 10.1371/journal.pntd.0000449
[90]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(?Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[91]  Yuan F, Verhelst SH, Blum G, Coussens LM, Bogyo M (2006) A selective activity-based probe for the papain family cysteine protease dipeptidyl peptidase I/cathepsin C. J Am Chem Soc 128: 5616–5617. doi: 10.1021/ja060835v
[92]  Murata M, Miyashita S, Yokoo C, Tamai M, Hanada K, et al. (1991) Novel epoxysuccinyl peptides. Selective inhibitors of cathepsin B, in vitro. FEBS Lett 280: 307–310. doi: 10.1016/0014-5793(91)80318-W
[93]  Sojka D, Franta Z, Horn M, Hajdusek O, Caffrey CR, et al. (2008) Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasit Vectors 1: 7. doi: 10.1186/1756-3305-1-7
[94]  Br?mme D, Klaus JL, Okamoto K, Rasnick D, Palmer JT (1996) Peptidyl vinyl sulphones: a new class of potent and selective cysteine protease inhibitors: S2P2 specificity of human cathepsin O2 in comparison with cathepsins S and L. Biochem J 315 ( Pt 1): 85–89.
[95]  Kirschke H, Shaw E (1981) Rapid interaction of cathepsin L by Z-Phe-PheCHN12 and Z-Phe-AlaCHN2. Biochem Biophys Res Commun 101: 454–458. doi: 10.1016/0006-291X(81)91281-X
[96]  Krautz-Peterson G, Radwanska M, Ndegwa D, Shoemaker CB, Skelly PJ (2007) Optimizing gene suppression in schistosomes using RNA interference. Mol Biochem Parasitol 153: 194–202. doi: 10.1016/j.molbiopara.2007.03.006
[97]  Morales FC, Furtado DR, Rumjanek FD (2004) The N-terminus moiety of the cystatin SmCys from Schistosoma mansoni regulates its inhibitory activity in vitro and in vivo. Mol Biochem Parasitol 134: 65–73. doi: 10.1016/j.molbiopara.2003.10.016
[98]  Ndegwa D, Krautz-Peterson G, Skelly PJ (2007) Protocols for gene silencing in schistosomes. Exp Parasitol 117: 284–291. doi: 10.1016/j.exppara.2007.07.012
[99]  Kiefer J, Yin HH, Que QQ, Mousses S (2009) High-throughput siRNA screening as a method of perturbation of biological systems and identification of targeted pathways coupled with compound screening. Methods Mol Biol 563: 275–287. doi: 10.1007/978-1-60761-175-2_15
[100]  MacKeigan JP, Murphy LO, Blenis J (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7: 591–600. doi: 10.1038/ncb1258
[101]  Perrimon N, Friedman A, Mathey-Prevot B, Eggert US (2007) Drug-target identification in Drosophila cells: combining high-throughout RNAi and small-molecule screens. Drug Discov Today 12: 28–33. doi: 10.1016/j.drudis.2006.10.006
[102]  Cherry S (2008) Genomic RNAi screening in Drosophila S2 cells: what have we learned about host-pathogen interactions? Curr Opin Microbiol 11: 262–270. doi: 10.1016/j.mib.2008.05.007
[103]  Prudencio M, Rodrigues CD, Hannus M, Martin C, Real E, et al. (2008) Kinome-wide RNAi screen implicates at least 5 host hepatocyte kinases in Plasmodium sporozoite infection. PLoS Pathog 4: e1000201. doi: 10.1371/journal.ppat.1000201
[104]  Cheever AW, Weller TH (1958) Observations on the growth and nutritional requirements of Schistosoma mansoni in vitro. Am J Hyg 68: 322–339.
[105]  Clegg JA (1965) In vitro cultivation of Schistosoma mansoni. Exp Parasitol 16: 133–147. doi: 10.1016/0014-4894(65)90037-8
[106]  Cousin CE, Stirewalt MA, Dorsey CH, Watson LP (1986) Schistosoma mansoni: comparative development of schistosomules produced by artificial techniques. J Parasitol 72: 606–609. doi: 10.2307/3281520
[107]  Jensen DV, Stirewalt MA, Walters M (1965) Growth of Schistosoma mansoni cercariae under dialysis membranes in Rose multipurpose chambers. Exp Parasitol 17: 15–23. doi: 10.1016/0014-4894(65)90004-4
[108]  Thornhill J, Coelho PM, McVeigh P, Maule A, Jurberg AD, et al. (2009) Schistosoma mansoni cercariae experience influx of macromolecules during skin penetration. Parasitology 136: 1257–1267. doi: 10.1017/S0031182009990692

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133