[1] | da Silva BA, dos Santos AL, Barreto-Bergter E, Pinto MR (2006) Extracellular peptidase in the fungal pathogen Pseudallescheria boydii. Curr Microbiol 53: 18–22. doi: 10.1007/s00284-005-0156-1
|
[2] | Tadros TS, Workowski KA, Siegel RJ, Hunter S, Schwartz DA (1998) Pathology of hyalohyphomycosis caused by Scedosporium apiospermum (Pseudallescheria boydii): an emerging mycosis. Hum Pathol 29: 1266–1272. doi: 10.1016/S0046-8177(98)90255-6
|
[3] | Panackal AA, Marr KA (2004) Scedosporium/Pseudallescheria infections. Semin Respir Crit Care Med 25: 171–181. doi: 10.1055/s-2004-824901
|
[4] | Cimon B, Carrere J, Vinatier JF, Chazalette JP, Chabasse D, et al. (2000) Clinical significance of Scedosporium apiospermum in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis 19: 53–56. doi: 10.1007/s100960050011
|
[5] | Guarro J, Kantarcioglu AS, Horre R, Rodriguez-Tudela JL, Cuenca Estrella M, et al. (2006) Scedosporium apiospermum: changing clinical spectrum of a therapy-refractory opportunist. Med Mycol 44: 295–327. doi: 10.1080/13693780600752507
|
[6] | Patterson TF, Andriole VT, Zervos MJ, Therasse D, Kauffman CA (1990) The epidemiology of pseudallescheriasis complicating transplantation: nosocomial and community-acquired infection. Mycoses 33: 297–302.
|
[7] | Harun A, Perdomo H, Gilgado F, Chen SC, Cano J, et al. (2009) Genotyping of Scedosporium species: a review of molecular approaches. Med Mycol 47: 406–414. doi: 10.1080/13693780802510240
|
[8] | Roilides E, Simitsopoulou M, Katragkou A, Walsh TJ (2009) Host immune response against Scedosporium species. Med Mycol 47: 433–440. doi: 10.1080/13693780902738006
|
[9] | Tronchin G, Pihet M, Lopes-Bezerra LM, Bouchara JP (2008) Adherence mechanisms in human pathogenic fungi. Med Mycol 46: 749–772. doi: 10.1080/13693780802206435
|
[10] | Pinto MR, de Sa AC, Limongi CL, Rozental S, Santos AL, et al. (2004) Involvement of peptidorhamnomannan in the interaction of Pseudallescheria boydii and HEp2 cells. Microbes Infect 6: 1259–1267. doi: 10.1016/j.micinf.2004.07.006
|
[11] | Pinto MR, Mulloy B, Haido RM, Travassos LR, Barreto Bergter E (2001) A peptidorhamnomannan from the mycelium of Pseudallescheria boydii is a potential diagnostic antigen of this emerging human pathogen. Microbiology 147: 1499–1506.
|
[12] | Gorin PA, Haskins RH, Travassos LR, Mendonca-Previato L (1977) Further studies on the rhamnomannans and acidic rhamnomannans of Sporothrix schenckii and Ceratocystis stenoceras. Carbohydr Res 55: 21–33. doi: 10.1016/S0008-6215(00)84440-7
|
[13] | Haido RM, Silva MH, Ejzemberg R, Leitao EA, Hearn VM, et al. (1998) Analysis of peptidogalactomannans from the mycelial surface of Aspergillus fumigatus. Med Mycol 36: 313–321. doi: 10.1080/02681219880000491
|
[14] | Gilgado F, Cano J, Gene J, Guarro J (2005) Molecular phylogeny of the Pseudallescheria boydii species complex: proposal of two new species. J Clin Microbiol 43: 4930–4942. doi: 10.1128/JCM.43.10.4930-4942.2005
|
[15] | Gacser A, Salomon S, Schafer W (2005) Direct transformation of a clinical isolate of Candida parapsilosis using a dominant selection marker. FEMS Microbiol Lett 245: 117–121. doi: 10.1016/j.femsle.2005.02.035
|
[16] | Thornton CR (2009) Tracking the emerging human pathogen Pseudallescheria boydii by using highly specific monoclonal antibodies. Clin Vaccine Immunol 16: 756–764. doi: 10.1128/CVI.00061-09
|
[17] | Guimaraes AJ, Frases S, Gomez FJ, Zancope-Oliveira RM, Nosanchuk JD (2009) Monoclonal antibodies to heat shock protein 60 alter the pathogenesis of Histoplasma capsulatum. Infect Immun 77: 1357–1367. doi: 10.1128/IAI.01443-08
|
[18] | Durauer A, Berger E, Zandian M, Mersich C, Schuster M, et al. (2008) Yeast cell surface display system for determination of humoral response to active immunization with a monoclonal antibody against EpCAM. J Biochem Biophys Methods 70: 1109–1115. doi: 10.1016/j.jprot.2008.01.008
|
[19] | Shi L, Albuquerque PC, Lazar-Molnar E, Wang X, Santambrogio L, et al. (2008) A monoclonal antibody to Histoplasma capsulatum alters the intracellular fate of the fungus in murine macrophages. Eukaryot Cell 7: 1109–1117. doi: 10.1128/EC.00036-08
|
[20] | Alvarez M, Casadevall A (2007) Cell-to-cell spread and massive vacuole formation after Cryptococcus neoformans infection of murine macrophages. BMC Immunol 8: 16. doi: 10.1186/1471-2172-8-16
|
[21] | Manavathu EK, Cutright J, Chandrasekar PH (1999) Comparative study of susceptibilities of germinated and ungerminated conidia of Aspergillus fumigatus to various antifungal agents. J Clin Microbiol 37: 858–861.
|
[22] | Madesh M, Balasubramanian KA (1998) Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J Biochem Biophys 35: 184–188.
|
[23] | van Burik JA, Magee PT (2001) Aspects of fungal pathogenesis in humans. Annu Rev Microbiol 55: 743–772. doi: 10.1146/annurev.micro.55.1.743
|
[24] | Meletiadis J, Meis JF, Mouton JW, Rodriquez-Tudela JL, Donnelly JP, et al. (2002) In vitro activities of new and conventional antifungal agents against clinical Scedosporium isolates. Antimicrob Agents Chemother 46: 62–68. doi: 10.1128/AAC.46.1.62-68.2002
|
[25] | Carrillo AJ, Guarro J (2001) In vitro activities of four novel triazoles against Scedosporium spp. Antimicrob Agents Chemother 45: 2151–2153. doi: 10.1128/AAC.45.7.2151-2153.2001
|
[26] | Hall LR, Diaconu E, Pearlman E (2001) A dominant role for Fc gamma receptors in antibody-dependent corneal inflammation. J Immunol 167: 919–925.
|
[27] | Lendvai N, Qu XW, Hsueh W, Casadevall A (2000) Mechanism for the isotype dependence of antibody-mediated toxicity in Cryptococcus neoformans-infected mice. J Immunol 164: 4367–4374.
|
[28] | Savoy AC, Lupan DM, Manalo PB, Roberts JS, Schlageter AM, et al. (1997) Acute lethal toxicity following passive immunization for treatment of murine cryptococcosis. Infect Immun 65: 1800–1807.
|
[29] | Weiser MR, Williams JP, Moore FD Jr, Kobzik L, Ma M, et al. (1996) Reperfusion injury of ischemic skeletal muscle is mediated by natural antibody and complement. J Exp Med 183: 2343–2348. doi: 10.1084/jem.183.5.2343
|
[30] | Barreto-Bergter E, Sassaki GL, Wagner R, Souza LM, Souza MV, et al. (2008) The opportunistic fungal pathogen Scedosporium prolificans: carbohydrate epitopes of its glycoproteins. Int J Biol Macromol 42: 93–102. doi: 10.1016/j.ijbiomac.2007.09.015
|
[31] | Lima OC, Figueiredo CC, Previato JO, Mendonca-Previato L, Morandi V, et al. (2001) Involvement of fungal cell wall components in adhesion of Sporothrix schenckii to human fibronectin. Infect Immun 69: 6874–6880. doi: 10.1128/IAI.69.11.6874-6880.2001
|
[32] | Pinto MR, Gorin PA, Wait R, Mulloy B, Barreto-Bergter E (2005) Structures of the O-linked oligosaccharides of a complex glycoconjugate from Pseudallescheria boydii. Glycobiology 15: 895–904. doi: 10.1093/glycob/cwi084
|
[33] | Pinto MR, Rodrigues ML, Travassos LR, Haido RM, Wait R, et al. (2002) Characterization of glucosylceramides in Pseudallescheria boydii and their involvement in fungal differentiation. Glycobiology 12: 251–260. doi: 10.1093/glycob/12.4.251
|
[34] | Alviano DS, Rodrigues ML, Almeida CA, Santos AL, Couceiro JN, et al. (2004) Differential expression of sialylglycoconjugates and sialidase activity in distinct morphological stages of Fonsecaea pedrosoi. Arch Microbiol 181: 278–286. doi: 10.1007/s00203-004-0653-9
|
[35] | Holbrook ED, Rappleye CA (2008) Histoplasma capsulatum pathogenesis: making a lifestyle switch. Curr Opin Microbiol 11: 318–324. doi: 10.1016/j.mib.2008.05.010
|
[36] | San-Blas G, Vernet D (1977) Induction of the synthesis of cell wall alpha-1,3-glucan in the yeastlike form of Paracoccidioides brasiliensis strain IVIC Pb9 by fetal calf serum. Infect Immun 15: 897–902.
|
[37] | Hogan LH, Klein BS (1994) Altered expression of surface alpha-1,3-glucan in genetically related strains of Blastomyces dermatitidis that differ in virulence. Infect Immun 62: 3543–3546.
|
[38] | Zaragoza O, Taborda CP, Casadevall A (2003) The efficacy of complement-mediated phagocytosis of Cryptococcus neoformans is dependent on the location of C3 in the polysaccharide capsule and involves both direct and indirect C3-mediated interactions. Eur J Immunol 33: 1957–1967. doi: 10.1002/eji.200323848
|
[39] | Ravetch JV, Kinet JP (1991) Fc receptors. Annu Rev Immunol 9: 457–492. doi: 10.1146/annurev.iy.09.040191.002325
|
[40] | Beenhouwer DO, Yoo EM, Lai CW, Rocha MA, Morrison SL (2007) Human immunoglobulin G2 (IgG2) and IgG4, but not IgG1 or IgG3, protect mice against Cryptococcus neoformans infection. Infect Immun 75: 1424–1435. doi: 10.1128/IAI.01161-06
|
[41] | Neuberger MS, Rajewsky K (1981) Activation of mouse complement by monoclonal mouse antibodies. Eur J Immunol 11: 1012–1016. doi: 10.1002/eji.1830111212
|
[42] | Jones HE, Taylor PR, McGreal E, Zamze S, Wong SY (2009) The contribution of naturally occurring IgM antibodies, IgM cross-reactivity and complement dependency in murine humoral responses to pneumococcal capsular polysaccharides. Vaccine 27: 5806–5815. doi: 10.1016/j.vaccine.2009.07.063
|
[43] | Zhong Z, Burns T, Chang Q, Carroll M, Pirofski L (1999) Molecular and functional characteristics of a protective human monoclonal antibody to serotype 8 Streptococcus pneumoniae capsular polysaccharide. Infect Immun 67: 4119–4127.
|
[44] | King PT, Ngui J, Gunawardena D, Holmes PW, Farmer MW, et al. (2008) Systemic humoral immunity to non-typeable Haemophilus influenzae. Clin Exp Immunol 153: 376–384. doi: 10.1111/j.1365-2249.2008.03697.x
|
[45] | Mukherjee J, Nussbaum G, Scharff MD, Casadevall A (1995) Protective and nonprotective monoclonal antibodies to Cryptococcus neoformans originating from one B cell. J Exp Med 181: 405–409. doi: 10.1084/jem.181.1.405
|
[46] | Kozel TR, deJong BC, Grinsell MM, MacGill RS, Wall KK (1998) Characterization of anticapsular monoclonal antibodies that regulate activation of the complement system by the Cryptococcus neoformans capsule. Infect Immun 66: 1538–1546.
|
[47] | Garcia-Rivera J, Chang YC, Kwon-Chung KJ, Casadevall A (2004) Cryptococcus neoformans CAP59 (or Cap59p) is involved in the extracellular trafficking of capsular glucuronoxylomannan. Eukaryot Cell 3: 385–392. doi: 10.1128/EC.3.2.385-392.2004
|
[48] | Wasylnka JA, Moore MM (2003) Aspergillus fumigatus conidia survive and germinate in acidic organelles of A549 epithelial cells. J Cell Sci 116: 1579–1587. doi: 10.1242/jcs.00329
|
[49] | Pereira MM, Silva BA, Pinto MR, Barreto-Bergter E, dos Santos AL (2009) Proteins and peptidases from conidia and mycelia of Scedosporium apiospermum strain HLPB. Mycopathologia 167: 25–30. doi: 10.1007/s11046-008-9147-7
|
[50] | Silva BA, Pinto MR, Soares RM, Barreto-Bergter E, Santos AL (2006) Pseudallescheria boydii releases metallopeptidases capable of cleaving several proteinaceous compounds. Res Microbiol 157: 425–432. doi: 10.1016/j.resmic.2005.11.010
|
[51] | Lee SC, Casadevall A, Dickson DW (1996) Immunohistochemical localization of capsular polysaccharide antigen in the central nervous system cells in cryptococcal meningoencephalitis. Am J Pathol 148: 1267–1274.
|
[52] | Grimm LH, Kelly S, Krull R, Hempel DC (2005) Morphology and productivity of filamentous fungi. Appl Microbiol Biotechnol 69: 375–384. doi: 10.1007/s00253-005-0213-5
|
[53] | Brummer E, Stevens DA (1995) Antifungal mechanisms of activated murine bronchoalveolar or peritoneal macrophages for Histoplasma capsulatum. Clin Exp Immunol 102: 65–70. doi: 10.1111/j.1365-2249.1995.tb06637.x
|
[54] | Cox GM, Harrison TS, McDade HC, Taborda CP, Heinrich G, et al. (2003) Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. Infect Immun 71: 173–180. doi: 10.1128/IAI.71.1.173-180.2003
|
[55] | Rivera J, Mukherjee J, Weiss LM, Casadevall A (2002) Antibody efficacy in murine pulmonary Cryptococcus neoformans infection: a role for nitric oxide. J Immunol 168: 3419–3427.
|
[56] | Rossi GR, Cervi LA, Garcia MM, Chiapello LS, Sastre DA, et al. (1999) Involvement of nitric oxide in protecting mechanism during experimental cryptococcosis. Clin Immunol 90: 256–265. doi: 10.1006/clim.1998.4639
|
[57] | Taborda CP, Casadevall A (2001) Immunoglobulin M efficacy against Cryptococcus neoformans: mechanism, dose dependence, and prozone-like effects in passive protection experiments. J Immunol 166: 2100–2107.
|