[1] | Ross R (1916) An application of the theory of probabilities to the study of a priori pathometry, Part 1. Proc R Soc Lond A 92: 204–230. doi: 10.1098/rspa.1916.0007
|
[2] | Grassly NC, Fraser C (2008) Mathematical models of infectious disease transmission. Nat Rev Microbiol 6: 477–487. doi: 10.1038/nrmicro1845
|
[3] | Lord CC (2004) Seasonal population dynamics and behaviour of insects in models of vector-borne pathogens. Physiol Entomol 29: 214–222. doi: 10.1111/j.0307-6962.2004.00411.x
|
[4] | Styer LM, Carey JR, Wang JL, Scott TW (2007) Mosquitoes do senesce: departure from the paradigm of constant mortality. Am J Trop Med Hyg 76: 111–117.
|
[5] | Lord CC (2007) Modeling and biological control of mosquitoes. J Am Mosq Control Assoc 23: 252–264. doi: 10.2987/8756-971X(2007)23[252:MABCOM]2.0.CO;2
|
[6] | Read AF, Taylor LH (2001) The ecology of genetically diverse infections. Science 292: 1099–1102. doi: 10.1126/science.1059410
|
[7] | Peck SL (2001) Antibiotic and insecticide resistance modeling–is it time to start talking? Trends Microbiol 9: 286–292. doi: 10.1016/S0966-842X(01)02042-X
|
[8] | Katholi CR, Unnasch TR (2006) Important experimental parameters for determining infection rates in arthropod vectors using pool screening approaches. Am J Trop Med Hyg 74: 779–785.
|
[9] | Muennig P, Khan K (2002) Designing and conducting cost-effectiveness analyses in medicine and health care. San Francisco: Jossey-Bass.
|
[10] | Luz PM, Codeco CT, Massad E, Struchiner CJ (2003) Uncertainties regarding dengue modeling in Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 98: 871–878. doi: 10.1590/S0074-02762003000700002
|
[11] | Peck SL (2004) Simulation as experiment: a philosophical reassessment for biological modeling. Trends Ecol Evol 19: 530–534. doi: 10.1016/j.tree.2004.07.019
|
[12] | Hotez PJ, Molyneux DH, Fenwick A, Kumaresan J, Sachs SE, et al. (2007) Control of neglected tropical diseases. N Engl J Med 357: 1018–1027. doi: 10.1056/NEJMra064142
|
[13] | Cupolillo E, Brahim LR, Toaldo CB, de Oliveira-Neto MP, de Brito MEF, et al. (2003) Genetic polymorphism and molecular epidemiology of Leishmania (Viannia) braziliensis from different hosts and geographic areas in Brazil. J Clin Microbiol 41: 3126–3132. doi: 10.1128/JCM.41.7.3126-3132.2003
|
[14] | Escalante AA, Cornejo OE, Rojas A, Udhayakumar V, Lal AA (2004) Assessing the effect of natural selection in malaria parasites. Trends Parasitol 20: 388–395. doi: 10.1016/j.pt.2004.06.002
|
[15] | Tadesse Z, Hailemariam A, Kolaczinski JH (2008) Potential for integrated control of neglected tropical diseases in Ethiopia. Trans R Soc Trop Med Hyg 102: 213–214. doi: 10.1016/j.trstmh.2007.09.005
|
[16] | Poolman EM, Galvani AP (2006) Modeling targeted ivermectin treatment for controlling river blindness. Am J Trop Med Hyg 75: 921–927.
|
[17] | Massad E (2007) The elimination of Chagas' disease from Brazil. Epidemiol Infect 1–12. doi: 10.1017/s0950268807009879
|
[18] | Burattini MN, Chen M, Chow A, Coutinho FA, Goh KT, et al. (2008) Modelling the control strategies against dengue in Singapore. Epidemiol Infect 136: 309–319. doi: 10.1017/S0950268807008667
|
[19] | Newton EA, Reiter P (1992) A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics. Am J Trop Med Hyg 47: 709–720.
|
[20] | Montella IR, Martins AJ, Viana-Medeiros PF, Lima JB, Braga IA, et al. (2007) Insecticide resistance mechanisms of Brazilian Aedes aegypti populations from 2001 to 2004. Am J Trop Med Hyg 77: 467–477.
|
[21] | Luz PM, Codeco CT, Medlock J, Struchiner CJ, Valle D, et al. (2009) Impact of insecticide interventions on the abundance and resistance profile of Aedes aegypti. Epidemiol Infect 137: 1203–1215. doi: 10.1017/S0950268808001799
|
[22] | Basu S, Friedland GH, Medlock J, Andrews JR, Shah NS, et al. (2009) Averting epidemics of extensively drug-resistant tuberculosis. Proc Natl Acad Sci U S A 106: 7672–7677. doi: 10.1073/pnas.0812472106
|
[23] | Bauch CT, Galvani AP, Earn DJ (2003) Group interest versus self-interest in smallpox vaccination policy. Proc Natl Acad Sci U S A 100: 10564–10567. doi: 10.1073/pnas.1731324100
|
[24] | Galvani AP, Reluga TC, Chapman GB (2007) Long-standing influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum. Proc Natl Acad Sci U S A 104: 5692–5697. doi: 10.1073/pnas.0606774104
|
[25] | Reluga TC, Bauch CT, Galvani AP (2006) Evolving public perceptions and stability in vaccine uptake. Math Biosci 204: 185–198. doi: 10.1016/j.mbs.2006.08.015
|
[26] | Codeco CT, Luz PM, Coelho F, Galvani AP, Struchiner C (2007) Vaccinating in disease-free regions: a vaccine model with application to yellow fever. J R Soc Interface 4: 1119–1125. doi: 10.1098/rsif.2007.0234
|
[27] | Massad E, Coutinho FA, Burattini MN, Lopez LF, Struchiner CJ (2005) Yellow fever vaccination: how much is enough? Vaccine 23: 3908–3914. doi: 10.1016/j.vaccine.2005.03.002
|
[28] | Struchiner CJ, Luz PM, Dourado I, Sato HK, Aguiar SG, et al. (2004) Risk of fatal adverse events associated with 17DD yellow fever vaccine. Epidemiol Infect 132: 939–946. doi: 10.1017/S0950268804002602
|
[29] | Alley WS, van Oortmarssen GJ, Boatin BA, Nagelkerke NJ, Plaisier AP, et al. (2001) Macrofilaricides and onchocerciasis control, mathematical modelling of the prospects for elimination. BMC Public Health 1: 12. doi: 10.1186/1471-2458-1-12
|
[30] | Cohen JE, Gurtler RE (2001) Modeling household transmission of American trypanosomiasis. Science 293: 694–698. doi: 10.1126/science.1060638
|
[31] | Alphey L, Beard CB, Billingsley P, Coetzee M, Crisanti A, et al. (2002) Malaria control with genetically manipulated insect vectors. Science 298: 119–121. doi: 10.1126/science.1078278
|
[32] | Boete C, Koella JC (2003) Evolutionary ideas about genetically manipulated mosquitoes and malaria control. Trends Parasitol 19: 32–38. doi: 10.1016/S1471-4922(02)00003-X
|
[33] | Medlock J, Luz PM, Struchiner CJ, Galvani AP (2009) The impact of transgenic mosquitoes on dengue virulence to humans and mosquitoes. Am Nat 174: 565–577. doi: 10.1086/605403
|
[34] | Michael E, Malecela-Lazaro MN, Simonsen PE, Pedersen EM, Barker G, et al. (2004) Mathematical modelling and the control of lymphatic filariasis. Lancet Infect Dis 4: 223–234. doi: 10.1016/S1473-3099(04)00973-9
|
[35] | Norman RA, Chan MS, Srividya A, Pani SP, Ramaiah KD, et al. (2000) EPIFIL: the development of an age-structured model for describing the transmission dynamics and control of lymphatic filariasis. Epidemiol Infect 124: 529–541. doi: 10.1017/S0950268899003702
|
[36] | Nakagawa J, Cordon-Rosales C, Juarez J, Itzep C, Nonami T (2003) Impact of residual spraying on Rhodnius prolixus and Triatoma dimidiata in the department of Zacapa in Guatemala. Mem Inst Oswaldo Cruz 98: 277–281. doi: 10.1590/S0074-02762003000200019
|
[37] | Vazquez-Prokopec GM, Spillmann C, Zaidenberg M, Kitron U, Gurtler RE (2009) Cost-effectiveness of chagas disease vector control strategies in northwestern Argentina. PLoS Negl Trop Dis 3: e363. doi:10.1371/journal.pntd.0000363.
|
[38] | Vanlerberghe V, Diap G, Guerin PJ, Meheus F, Gerstl S, et al. (2007) Drug policy for visceral leishmaniasis: a cost-effectiveness analysis. Trop Med Int Health 12: 274–283. doi: 10.1111/j.1365-3156.2006.01782.x
|
[39] | Boelaert M, Lynen L, Desjeux P, Van der Stuyft P (1999) Cost-effectiveness of competing diagnostic-therapeutic strategies for visceral leishmaniasis. Bull World Health Organ 77: 667–674.
|
[40] | Suaya JA, Shepard DS, Chang MS, Caram M, Hoyer S, et al. (2007) Cost-effectiveness of annual targeted larviciding campaigns in Cambodia against the dengue vector Aedes aegypti. Trop Med Int Health 12: 1026–1036. doi: 10.1111/j.1365-3156.2007.01889.x
|
[41] | Farrar J, Focks D, Gubler D, Barrera R, Guzman MG, et al. (2007) Towards a global dengue research agenda. Trop Med Int Health 12: 695–699. doi: 10.1111/j.1365-3156.2007.01838.x
|
[42] | Rand DA, Keeling M, Wilson HB (1995) Invasion, stability and evolution to criticality in spatially extended, artificial host-pathogen ecologies. Proc R Soc Lond B Biol Sci 259: 55–63. doi: 10.1098/rspb.1995.0009
|
[43] | Berk R, Bickel P, Campbell K, Fovell R, Keller-McNulty S, et al. (2002) Workshop on statistical approaches for the evaluation of complex computer models. Stat Sci 17: 173–192. doi: 10.1214/ss/1030550860
|
[44] | Tebbens RJD, Thompson KM, Hunink MGM, Mazzuchi TA, Lewandowski D, et al. (2008) Uncertainty and sensitivity analyses of a dynamic economic evaluation model for vaccination programs. Medical Decis Making 28: 182–200. doi: 10.1177/0272989x07311752
|
[45] | Cohen JE (2004) Mathematics is biology's next microscope, only better; biology is mathematics' next physics, only better. PLoS Biol 2: e439. doi:10.1371/journal.pbio.0020439.
|
[46] | Edmunds WJ, Medley GF, Nokes DJ (1999) Evaluating the cost-effectiveness of vaccination programmes: a dynamic perspective. Stat Med 18: 3263–3282. doi: 10.1002/(SICI)1097-0258(19991215)18:23<3263::AID-SIM315>3.0.CO;2-3
|
[47] | Tebbens RJD, Thompson KM (2009) Priority Shifting and the Dynamics of Managing Eradicable Infectious Diseases. Manage Sci 55: 650–663. doi: 10.1287/mnsc.1080.0965
|
[48] | May RM (2004) Uses and abuses of mathematics in biology. Science 303: 790–793. doi: 10.1126/science.1094442
|