全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Modeling Transmission Dynamics and Control of Vector-Borne Neglected Tropical Diseases

DOI: 10.1371/journal.pntd.0000761

Full-Text   Cite this paper   Add to My Lib

Abstract:

Neglected tropical diseases affect more than one billion people worldwide. The populations most impacted by such diseases are typically the most resource-limited. Mathematical modeling of disease transmission and cost-effectiveness analyses can play a central role in maximizing the utility of limited resources for neglected tropical diseases. We review the contributions that mathematical modeling has made to optimizing intervention strategies of vector-borne neglected diseases. We propose directions forward in the modeling of these diseases, including integrating new knowledge of vector and pathogen ecology, incorporating evolutionary responses to interventions, and expanding the scope of sensitivity analysis in order to achieve robust results.

References

[1]  Ross R (1916) An application of the theory of probabilities to the study of a priori pathometry, Part 1. Proc R Soc Lond A 92: 204–230. doi: 10.1098/rspa.1916.0007
[2]  Grassly NC, Fraser C (2008) Mathematical models of infectious disease transmission. Nat Rev Microbiol 6: 477–487. doi: 10.1038/nrmicro1845
[3]  Lord CC (2004) Seasonal population dynamics and behaviour of insects in models of vector-borne pathogens. Physiol Entomol 29: 214–222. doi: 10.1111/j.0307-6962.2004.00411.x
[4]  Styer LM, Carey JR, Wang JL, Scott TW (2007) Mosquitoes do senesce: departure from the paradigm of constant mortality. Am J Trop Med Hyg 76: 111–117.
[5]  Lord CC (2007) Modeling and biological control of mosquitoes. J Am Mosq Control Assoc 23: 252–264. doi: 10.2987/8756-971X(2007)23[252:MABCOM]2.0.CO;2
[6]  Read AF, Taylor LH (2001) The ecology of genetically diverse infections. Science 292: 1099–1102. doi: 10.1126/science.1059410
[7]  Peck SL (2001) Antibiotic and insecticide resistance modeling–is it time to start talking? Trends Microbiol 9: 286–292. doi: 10.1016/S0966-842X(01)02042-X
[8]  Katholi CR, Unnasch TR (2006) Important experimental parameters for determining infection rates in arthropod vectors using pool screening approaches. Am J Trop Med Hyg 74: 779–785.
[9]  Muennig P, Khan K (2002) Designing and conducting cost-effectiveness analyses in medicine and health care. San Francisco: Jossey-Bass.
[10]  Luz PM, Codeco CT, Massad E, Struchiner CJ (2003) Uncertainties regarding dengue modeling in Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 98: 871–878. doi: 10.1590/S0074-02762003000700002
[11]  Peck SL (2004) Simulation as experiment: a philosophical reassessment for biological modeling. Trends Ecol Evol 19: 530–534. doi: 10.1016/j.tree.2004.07.019
[12]  Hotez PJ, Molyneux DH, Fenwick A, Kumaresan J, Sachs SE, et al. (2007) Control of neglected tropical diseases. N Engl J Med 357: 1018–1027. doi: 10.1056/NEJMra064142
[13]  Cupolillo E, Brahim LR, Toaldo CB, de Oliveira-Neto MP, de Brito MEF, et al. (2003) Genetic polymorphism and molecular epidemiology of Leishmania (Viannia) braziliensis from different hosts and geographic areas in Brazil. J Clin Microbiol 41: 3126–3132. doi: 10.1128/JCM.41.7.3126-3132.2003
[14]  Escalante AA, Cornejo OE, Rojas A, Udhayakumar V, Lal AA (2004) Assessing the effect of natural selection in malaria parasites. Trends Parasitol 20: 388–395. doi: 10.1016/j.pt.2004.06.002
[15]  Tadesse Z, Hailemariam A, Kolaczinski JH (2008) Potential for integrated control of neglected tropical diseases in Ethiopia. Trans R Soc Trop Med Hyg 102: 213–214. doi: 10.1016/j.trstmh.2007.09.005
[16]  Poolman EM, Galvani AP (2006) Modeling targeted ivermectin treatment for controlling river blindness. Am J Trop Med Hyg 75: 921–927.
[17]  Massad E (2007) The elimination of Chagas' disease from Brazil. Epidemiol Infect 1–12. doi: 10.1017/s0950268807009879
[18]  Burattini MN, Chen M, Chow A, Coutinho FA, Goh KT, et al. (2008) Modelling the control strategies against dengue in Singapore. Epidemiol Infect 136: 309–319. doi: 10.1017/S0950268807008667
[19]  Newton EA, Reiter P (1992) A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics. Am J Trop Med Hyg 47: 709–720.
[20]  Montella IR, Martins AJ, Viana-Medeiros PF, Lima JB, Braga IA, et al. (2007) Insecticide resistance mechanisms of Brazilian Aedes aegypti populations from 2001 to 2004. Am J Trop Med Hyg 77: 467–477.
[21]  Luz PM, Codeco CT, Medlock J, Struchiner CJ, Valle D, et al. (2009) Impact of insecticide interventions on the abundance and resistance profile of Aedes aegypti. Epidemiol Infect 137: 1203–1215. doi: 10.1017/S0950268808001799
[22]  Basu S, Friedland GH, Medlock J, Andrews JR, Shah NS, et al. (2009) Averting epidemics of extensively drug-resistant tuberculosis. Proc Natl Acad Sci U S A 106: 7672–7677. doi: 10.1073/pnas.0812472106
[23]  Bauch CT, Galvani AP, Earn DJ (2003) Group interest versus self-interest in smallpox vaccination policy. Proc Natl Acad Sci U S A 100: 10564–10567. doi: 10.1073/pnas.1731324100
[24]  Galvani AP, Reluga TC, Chapman GB (2007) Long-standing influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum. Proc Natl Acad Sci U S A 104: 5692–5697. doi: 10.1073/pnas.0606774104
[25]  Reluga TC, Bauch CT, Galvani AP (2006) Evolving public perceptions and stability in vaccine uptake. Math Biosci 204: 185–198. doi: 10.1016/j.mbs.2006.08.015
[26]  Codeco CT, Luz PM, Coelho F, Galvani AP, Struchiner C (2007) Vaccinating in disease-free regions: a vaccine model with application to yellow fever. J R Soc Interface 4: 1119–1125. doi: 10.1098/rsif.2007.0234
[27]  Massad E, Coutinho FA, Burattini MN, Lopez LF, Struchiner CJ (2005) Yellow fever vaccination: how much is enough? Vaccine 23: 3908–3914. doi: 10.1016/j.vaccine.2005.03.002
[28]  Struchiner CJ, Luz PM, Dourado I, Sato HK, Aguiar SG, et al. (2004) Risk of fatal adverse events associated with 17DD yellow fever vaccine. Epidemiol Infect 132: 939–946. doi: 10.1017/S0950268804002602
[29]  Alley WS, van Oortmarssen GJ, Boatin BA, Nagelkerke NJ, Plaisier AP, et al. (2001) Macrofilaricides and onchocerciasis control, mathematical modelling of the prospects for elimination. BMC Public Health 1: 12. doi: 10.1186/1471-2458-1-12
[30]  Cohen JE, Gurtler RE (2001) Modeling household transmission of American trypanosomiasis. Science 293: 694–698. doi: 10.1126/science.1060638
[31]  Alphey L, Beard CB, Billingsley P, Coetzee M, Crisanti A, et al. (2002) Malaria control with genetically manipulated insect vectors. Science 298: 119–121. doi: 10.1126/science.1078278
[32]  Boete C, Koella JC (2003) Evolutionary ideas about genetically manipulated mosquitoes and malaria control. Trends Parasitol 19: 32–38. doi: 10.1016/S1471-4922(02)00003-X
[33]  Medlock J, Luz PM, Struchiner CJ, Galvani AP (2009) The impact of transgenic mosquitoes on dengue virulence to humans and mosquitoes. Am Nat 174: 565–577. doi: 10.1086/605403
[34]  Michael E, Malecela-Lazaro MN, Simonsen PE, Pedersen EM, Barker G, et al. (2004) Mathematical modelling and the control of lymphatic filariasis. Lancet Infect Dis 4: 223–234. doi: 10.1016/S1473-3099(04)00973-9
[35]  Norman RA, Chan MS, Srividya A, Pani SP, Ramaiah KD, et al. (2000) EPIFIL: the development of an age-structured model for describing the transmission dynamics and control of lymphatic filariasis. Epidemiol Infect 124: 529–541. doi: 10.1017/S0950268899003702
[36]  Nakagawa J, Cordon-Rosales C, Juarez J, Itzep C, Nonami T (2003) Impact of residual spraying on Rhodnius prolixus and Triatoma dimidiata in the department of Zacapa in Guatemala. Mem Inst Oswaldo Cruz 98: 277–281. doi: 10.1590/S0074-02762003000200019
[37]  Vazquez-Prokopec GM, Spillmann C, Zaidenberg M, Kitron U, Gurtler RE (2009) Cost-effectiveness of chagas disease vector control strategies in northwestern Argentina. PLoS Negl Trop Dis 3: e363. doi:10.1371/journal.pntd.0000363.
[38]  Vanlerberghe V, Diap G, Guerin PJ, Meheus F, Gerstl S, et al. (2007) Drug policy for visceral leishmaniasis: a cost-effectiveness analysis. Trop Med Int Health 12: 274–283. doi: 10.1111/j.1365-3156.2006.01782.x
[39]  Boelaert M, Lynen L, Desjeux P, Van der Stuyft P (1999) Cost-effectiveness of competing diagnostic-therapeutic strategies for visceral leishmaniasis. Bull World Health Organ 77: 667–674.
[40]  Suaya JA, Shepard DS, Chang MS, Caram M, Hoyer S, et al. (2007) Cost-effectiveness of annual targeted larviciding campaigns in Cambodia against the dengue vector Aedes aegypti. Trop Med Int Health 12: 1026–1036. doi: 10.1111/j.1365-3156.2007.01889.x
[41]  Farrar J, Focks D, Gubler D, Barrera R, Guzman MG, et al. (2007) Towards a global dengue research agenda. Trop Med Int Health 12: 695–699. doi: 10.1111/j.1365-3156.2007.01838.x
[42]  Rand DA, Keeling M, Wilson HB (1995) Invasion, stability and evolution to criticality in spatially extended, artificial host-pathogen ecologies. Proc R Soc Lond B Biol Sci 259: 55–63. doi: 10.1098/rspb.1995.0009
[43]  Berk R, Bickel P, Campbell K, Fovell R, Keller-McNulty S, et al. (2002) Workshop on statistical approaches for the evaluation of complex computer models. Stat Sci 17: 173–192. doi: 10.1214/ss/1030550860
[44]  Tebbens RJD, Thompson KM, Hunink MGM, Mazzuchi TA, Lewandowski D, et al. (2008) Uncertainty and sensitivity analyses of a dynamic economic evaluation model for vaccination programs. Medical Decis Making 28: 182–200. doi: 10.1177/0272989x07311752
[45]  Cohen JE (2004) Mathematics is biology's next microscope, only better; biology is mathematics' next physics, only better. PLoS Biol 2: e439. doi:10.1371/journal.pbio.0020439.
[46]  Edmunds WJ, Medley GF, Nokes DJ (1999) Evaluating the cost-effectiveness of vaccination programmes: a dynamic perspective. Stat Med 18: 3263–3282. doi: 10.1002/(SICI)1097-0258(19991215)18:23<3263::AID-SIM315>3.0.CO;2-3
[47]  Tebbens RJD, Thompson KM (2009) Priority Shifting and the Dynamics of Managing Eradicable Infectious Diseases. Manage Sci 55: 650–663. doi: 10.1287/mnsc.1080.0965
[48]  May RM (2004) Uses and abuses of mathematics in biology. Science 303: 790–793. doi: 10.1126/science.1094442

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133