[1] | Peleg J (1968) Growth of arboviruses in monolayers from subcultured mosquito embryo cells. Virology 35: 617–619. doi: 10.1016/0042-6822(68)90293-6
|
[2] | Singh KRP (1967) Cell Cultures Derived From Larvae Of Aedes albopictus (Skuse) and Aedes aegypti (L.). Curr Sci 36: 506–508.
|
[3] | Igarashi A (1978) Isolation of a Singh's Aedes albopictus Cell Clone Sensitive to Dengue and Chikungunya Viruses. J Gen Virol 40: 531–544. doi: 10.1099/0022-1317-40-3-531
|
[4] | Reigel F (1980) Studies on Igarashi's Aedes albopictus cell clone C6/36. Experientia 36: 1450.
|
[5] | Sasao F, Igarashi A, Fukai K (1980) Amino acid requirements for the growth of Aedes albopictus Clone C6/36 cells and for the production of dengue and chikungunya viruses in the infected cells. Microbiology and Immunology 24: 915–924.
|
[6] | White LA (1987) Susceptibility of Aedes albopictus C6/36 cells to viral infection. J Clin Microbiol 25: 1221–1224.
|
[7] | Vasilakis N, Deardorff ER, Kenney JL, Rossi SL, Hanley KA, et al. (2009) Mosquitoes Put the Brake on Arbovirus Evolution: Experimental Evolution Reveals Slower Mutation Accumulation in Mosquito Than Vertebrate Cells. PLoS Pathog 5: e1000467. doi: 10.1371/journal.ppat.1000467
|
[8] | Chotkowski HL, Ciota AT, Jia Y, Puig-Basagoiti F, Kramer LD, et al. (2008) West Nile virus infection of Drosophila melanogaster induces a protective RNAi response. Virology 377: 197–206. doi: 10.1016/j.virol.2008.04.021
|
[9] | Cirimotich CM, Scott JC, Phillips AT, Geiss BJ, Olson KE (2009) Suppression of RNA Interference Increases Alphavirus Replication and Virus-Associated Mortality in Aedes aegypti Mosquitoes. BMC Microbiol 9: 49. doi: 10.1186/1471-2180-9-49
|
[10] | Sánchez-Vargas I, Scott JC, Poole-Smith BK, Franz AW, Barbosa-Solomieu V, et al. (2009) Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway. PLoS Pathog 5: e1000299. doi: 10.1371/journal.ppat.1000299
|
[11] | Lan Q, Fallon AM (1990) Small Heat Shock Proteins Distinguish between two Mosquito Species and Confirm Identity of Their Cell Lines. Am J Trop Med Hyg 43: 669–676.
|
[12] | Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler J-L (2006) Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nat Immunol 7: 590–597. doi: 10.1038/ni1335
|
[13] | van Rij RP, Saleh M-C, Berry B, Foo C, Houk A, et al. (2006) The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes & Development 20: 2985–2995. doi: 10.1101/gad.1482006
|
[14] | Wang X-H, Aliyari R, Li W-X, Li H-W, Kim K, et al. (2006) RNA Interference Directs Innate Immunity Against Viruses in Adult Drosophila. Science 312: 452–454. doi: 10.1126/science.1125694
|
[15] | Zamore PD, Haley B (2005) Ribo-gnome: The Big World of Small RNAs. Science 309: 1519–1524. doi: 10.1126/science.1111444
|
[16] | Nyk?nen A, Haley B, Zamore PD (2001) ATP Requirements and Small Interfering RNA Structure in the RNA Interference Pathway. Cell 107: 309–321. doi: 10.1016/S0092-8674(01)00547-5
|
[17] | Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409: 363–366. doi: 10.1038/35053110
|
[18] | Elbashir SM (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494–498. doi: 10.1038/35078107
|
[19] | Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20: 6877–6888. doi: 10.1093/emboj/20.23.6877
|
[20] | Liu Q (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301: 1921–1925. doi: 10.1126/science.1088710
|
[21] | Okamura K, Ishizuka A, Siomi H, Siomi MC (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18: 1655–1666. doi: 10.1101/gad.1210204
|
[22] | Rand TA, Ginalski K, Grishin NV, Wang X (2004) Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc Natl Acad Sci USA 101: 14385–14389. doi: 10.1073/pnas.0405913101
|
[23] | Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC (2005) Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes & Development 19: 2837–2848. doi: 10.1101/gad.1370605
|
[24] | Schwarz DS, Tomari Y, Zamore PD (2004) The RNA-Induced Silencing Complex Is a Mg2+-Dependent Endonuclease. Current Biology 14: 787–791. doi: 10.1016/j.cub.2004.03.008
|
[25] | Schwarz DS, Hutvágner G, Haley B, Zamore PD (2002) Evidence that siRNAs Function as Guides, Not Primers, in the Drosophila and Human RNAi Pathways. Molecular Cell 10: 537–548. doi: 10.1016/S1097-2765(02)00651-2
|
[26] | Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318: 761–764. doi: 10.1126/science.1146484
|
[27] | Vagin VV (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313: 320–324. doi: 10.1126/science.1129333
|
[28] | Saito K (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20: 2214–2222. doi: 10.1101/gad.1454806
|
[29] | Shpiz S, Kwon D, Rozovsky Y, Kalmykova A (2009) rasiRNA pathway controls antisense expression of Drosophila telomeric retrotransposons in the nucleus. Nucl Acids Res 37: 268–278. doi: 10.1093/nar/gkn960
|
[30] | Okamura K, Balla S, Martin R, Liu N, Lai EC (2008) Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nat Struct Mol Biol 15: 581–590. doi: 10.1038/nsmb.1438
|
[31] | Chung W-J, Okamura K, Martin R, Lai EC (2008) Endogenous RNA Interference Provides a Somatic Defense against Drosophila Transposons. Current Biology 18: 795–802. doi: 10.1016/j.cub.2008.05.006
|
[32] | Ghildiyal M, Seitz H, Horwich MD, Li C, Du T, et al. (2008) Endogenous siRNAs Derived from Transposons and mRNAs in Drosophila Somatic Cells. Science 320: 1077–1081. doi: 10.1126/science.1157396
|
[33] | Horwich MD, Li C, Matranga C, Vagin V, Farley G, et al. (2007) The Drosophila RNA Methyltransferase, DmHen1, Modifies Germline piRNAs and Single-Stranded siRNAs in RISC. Current Biology 17: 1265–1272. doi: 10.1016/j.cub.2007.06.030
|
[34] | Saito K (2007) Pimet, the Drosophila homolog of HEN1, mediates 2[prime]-O-methylation of Piwi- interacting RNAs at their 3[prime] ends. Genes Dev 21: 1603–1608. doi: 10.1101/gad.1563607
|
[35] | Gunawardane LS (2007) A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315: 1587–1590. doi: 10.1126/science.1140494
|
[36] | Wu Q, Luo Y, Lu R, Lau N, Lai EC, et al. (2010) Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proceedings of the National Academy of Sciences 107: 1606–1611. doi: 10.1073/pnas.0911353107
|
[37] | Campbell C, Black W, Hess A, Foy B (2008) Comparative genomics of small RNA regulatory pathway components in vector mosquitoes. BMC Genomics 9: 425. doi: 10.1186/1471-2164-9-425
|
[38] | Li S, Mead E, Liang S, Tu Z (2009) Direct sequencing and expression analysis of a large number of miRNAs in Aedes aegypti and a multi-species survey of novel mosquito miRNAs. BMC Genomics 10: 581. doi: 10.1186/1471-2164-10-581
|
[39] | Skalsky R, Vanlandingham D, Scholle F, Higgs S, Cullen B (2010) Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus. BMC Genomics 11: 119. doi: 10.1186/1471-2164-11-119
|
[40] | Uchil PD, Satchidanandam V (2003) Architecture of the Flaviviral Replication Complex: Protease, Nuclease, and Detergents Reveal Encasement Within Double-Layered Membrane Compartments. J Biol Chem 278: 24388–24398. doi: 10.1074/jbc.M301717200
|
[41] | Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CKE, et al. (2009) Composition and Three-Dimensional Architecture of the Dengue Virus Replication and Assembly Sites. Cell Host Microbe 5: 365–375. doi: 10.1016/j.chom.2009.03.007
|
[42] | Stollar V, Stollar BD (1970) Immunochemical Measurement of Double-stranded RNA of Uninfected and Arbovirus-Infected Mammalian Cells. Proceedings of the National Academy of Sciences of the United States of America 65: 993–1000. doi: 10.1073/pnas.65.4.993
|
[43] | Brackney DE, Beane JE, Ebel GD (2009) RNAi Targeting of West Nile Virus in Mosquito Midguts Promotes Virus Diversification. PLoS Pathog 5: e1000502. doi: 10.1371/journal.ppat.1000502
|
[44] | Campbell CL, Keene KM, Brackney DE, Olson KE, Blair CD, et al. (2008) Aedes aegypti uses RNA interference in defense against Sindbis virus infection. BMC Microbiol 8: 47. doi: 10.1186/1471-2180-8-47
|
[45] | Myles KM, Wiley MR, Morazzani EM, Adelman ZN (2008) Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes. Proceedings of the National Academy of Sciences 105: 19938–19943. doi: 10.1073/pnas.0803408105
|
[46] | Keene KM, Foy BD, Sanchez-Vargas I, Beaty BJ, Blair CD, et al. (2004) RNA interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proceedings of the National Academy of Sciences of the United States of America 101: 17240–17245. doi: 10.1073/pnas.0406983101
|
[47] | Haley B, Tang G, Zamore P (2003) In vitro analysis of RNA interference in Drosophila melanogaster. Methods 30: 330–336. doi: 10.1016/S1046-2023(03)00052-5
|
[48] | Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucl Acids Res 18: 6097–6100. doi: 10.1093/nar/18.20.6097
|
[49] | Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: A Sequence Logo Generator. Genome Research 14: 1188–1190. doi: 10.1101/gr.849004
|
[50] | Miller S, Kastner S, Krijnse-Locker J, Bühler S, Bartenschlager R (2007) The Non-structural Protein 4A of Dengue Virus Is an Integral Membrane Protein Inducing Membrane Alterations in a 2K-regulated Manner. J Biol Chem 282: 8873–8882. doi: 10.1074/jbc.M609919200
|
[51] | Cammisa-Parks H, Cisar LA, Kane A, Stollar V (1992) The complete nucleotide sequence of cell fusing agent (CFA): Homology between the nonstructural proteins encoded by CFA and the nonstructural proteins encoded by arthropod-borne flaviviruses. Virology 189: 511–524. doi: 10.1016/0042-6822(92)90575-A
|
[52] | Stollar V, Thomas VL (1975) An agent in the Aedes aegypti cell line (Peleg) which causes fusion of Aedes albopictus cells. Virology 64: 367–377. doi: 10.1016/0042-6822(75)90113-0
|
[53] | Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, et al. (2007) Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila. Cell 128: 1089–1103. doi: 10.1016/j.cell.2007.01.043
|
[54] | Stollar V, Schlesinger RW, Stevens TM (1967) Studies on the nature of dengue viruses: III. RNA synthesis in cells infected with type 2 dengue virus. Virology 33: 650–658. doi: 10.1016/0042-6822(67)90065-7
|
[55] | Zambon RA, Vakharia VN, Wu LP (2006) RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster. Cellular Microbiology 8: 880–889. doi: 10.1111/j.1462-5822.2006.00688.x
|
[56] | Adelman ZN, Sanchez-Vargas I, Travanty EA, Carlson JO, Beaty BJ, et al. (2002) RNA silencing of dengue virus type 2 replication in transformed C6/36 mosquito cells transcribing an inverted-repeat RNA derived from the virus genome. J Virol 76: 12925–12933. doi: 10.1128/JVI.76.24.12925-12933.2002
|
[57] | Lim DH, Kim J, Kim S, Carthew RW, Lee YS (2008) Functional analysis of dicer-2 missense mutations in the siRNA pathway of Drosophila. Biochemical and Biophysical Research Communications 371: 525–530. doi: 10.1016/j.bbrc.2008.04.118
|
[58] | Harigaya Y, Parker R (2010) No-go decay: a quality control mechanism for RNA in translation. Wiley Interdisciplinary Reviews: RNA 1: 132–141. doi: 10.1002/wrna.17
|
[59] | Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10: 94–108. doi: 10.1038/nrg2504
|
[60] | Parameswaran P, Sklan E, Wilkins C, Burgon T, Samuel MA, et al. (2010) Six RNA Viruses and Forty-One Hosts: Viral Small RNAs and Modulation of Small RNA Repertoires in Vertebrate and Invertebrate Systems. PLoS Pathog 6: e1000764. doi: 10.1371/journal.ppat.1000764
|