全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparison of Dengue Virus Type 2-Specific Small RNAs from RNA Interference-Competent and –Incompetent Mosquito Cells

DOI: 10.1371/journal.pntd.0000848

Full-Text   Cite this paper   Add to My Lib

Abstract:

The exogenous RNA interference (RNAi) pathway is an important antiviral defense against arboviruses in mosquitoes, and virus-specific small interfering (si)RNAs are key components of this pathway. Understanding the biogenesis of siRNAs in mosquitoes could have important ramifications in using RNAi to control arbovirus transmission. Using deep sequencing technology, we characterized dengue virus type 2 (DENV2)-specific small RNAs produced during infection of Aedes aegypti mosquitoes and A. aegypti Aag2 cell cultures and compared them to those produced in the C6/36 Aedes albopictus cell line. We show that the size and mixed polarity of virus-specific small RNAs from DENV-infected A. aegypti cells indicate that they are products of Dicer-2 (Dcr2) cleavage of long dsRNA, whereas C6/36 cells generate DENV2-specific small RNAs that are longer and predominantly positive polarity, suggesting that they originate from a different small RNA pathway. Examination of virus-specific small RNAs after infection of the two mosquito cell lines with the insect-only flavivirus cell fusing agent virus (CFAV) corroborated these findings. An in vitro assay also showed that Aag2 A. aegypti cells are capable of siRNA production, while C6/36 A. albopictus cells exhibit inefficient Dcr2 cleavage of long dsRNA. Defective expression or function of Dcr2, the key initiator of the RNAi pathway, might explain the comparatively robust growth of arthropod-borne viruses in the C6/36 cell line, which has been used frequently as a surrogate for studying molecular interactions between arboviruses and cells of their mosquito hosts.

References

[1]  Peleg J (1968) Growth of arboviruses in monolayers from subcultured mosquito embryo cells. Virology 35: 617–619. doi: 10.1016/0042-6822(68)90293-6
[2]  Singh KRP (1967) Cell Cultures Derived From Larvae Of Aedes albopictus (Skuse) and Aedes aegypti (L.). Curr Sci 36: 506–508.
[3]  Igarashi A (1978) Isolation of a Singh's Aedes albopictus Cell Clone Sensitive to Dengue and Chikungunya Viruses. J Gen Virol 40: 531–544. doi: 10.1099/0022-1317-40-3-531
[4]  Reigel F (1980) Studies on Igarashi's Aedes albopictus cell clone C6/36. Experientia 36: 1450.
[5]  Sasao F, Igarashi A, Fukai K (1980) Amino acid requirements for the growth of Aedes albopictus Clone C6/36 cells and for the production of dengue and chikungunya viruses in the infected cells. Microbiology and Immunology 24: 915–924.
[6]  White LA (1987) Susceptibility of Aedes albopictus C6/36 cells to viral infection. J Clin Microbiol 25: 1221–1224.
[7]  Vasilakis N, Deardorff ER, Kenney JL, Rossi SL, Hanley KA, et al. (2009) Mosquitoes Put the Brake on Arbovirus Evolution: Experimental Evolution Reveals Slower Mutation Accumulation in Mosquito Than Vertebrate Cells. PLoS Pathog 5: e1000467. doi: 10.1371/journal.ppat.1000467
[8]  Chotkowski HL, Ciota AT, Jia Y, Puig-Basagoiti F, Kramer LD, et al. (2008) West Nile virus infection of Drosophila melanogaster induces a protective RNAi response. Virology 377: 197–206. doi: 10.1016/j.virol.2008.04.021
[9]  Cirimotich CM, Scott JC, Phillips AT, Geiss BJ, Olson KE (2009) Suppression of RNA Interference Increases Alphavirus Replication and Virus-Associated Mortality in Aedes aegypti Mosquitoes. BMC Microbiol 9: 49. doi: 10.1186/1471-2180-9-49
[10]  Sánchez-Vargas I, Scott JC, Poole-Smith BK, Franz AW, Barbosa-Solomieu V, et al. (2009) Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway. PLoS Pathog 5: e1000299. doi: 10.1371/journal.ppat.1000299
[11]  Lan Q, Fallon AM (1990) Small Heat Shock Proteins Distinguish between two Mosquito Species and Confirm Identity of Their Cell Lines. Am J Trop Med Hyg 43: 669–676.
[12]  Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler J-L (2006) Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nat Immunol 7: 590–597. doi: 10.1038/ni1335
[13]  van Rij RP, Saleh M-C, Berry B, Foo C, Houk A, et al. (2006) The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes & Development 20: 2985–2995. doi: 10.1101/gad.1482006
[14]  Wang X-H, Aliyari R, Li W-X, Li H-W, Kim K, et al. (2006) RNA Interference Directs Innate Immunity Against Viruses in Adult Drosophila. Science 312: 452–454. doi: 10.1126/science.1125694
[15]  Zamore PD, Haley B (2005) Ribo-gnome: The Big World of Small RNAs. Science 309: 1519–1524. doi: 10.1126/science.1111444
[16]  Nyk?nen A, Haley B, Zamore PD (2001) ATP Requirements and Small Interfering RNA Structure in the RNA Interference Pathway. Cell 107: 309–321. doi: 10.1016/S0092-8674(01)00547-5
[17]  Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409: 363–366. doi: 10.1038/35053110
[18]  Elbashir SM (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494–498. doi: 10.1038/35078107
[19]  Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20: 6877–6888. doi: 10.1093/emboj/20.23.6877
[20]  Liu Q (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301: 1921–1925. doi: 10.1126/science.1088710
[21]  Okamura K, Ishizuka A, Siomi H, Siomi MC (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18: 1655–1666. doi: 10.1101/gad.1210204
[22]  Rand TA, Ginalski K, Grishin NV, Wang X (2004) Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc Natl Acad Sci USA 101: 14385–14389. doi: 10.1073/pnas.0405913101
[23]  Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC (2005) Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes & Development 19: 2837–2848. doi: 10.1101/gad.1370605
[24]  Schwarz DS, Tomari Y, Zamore PD (2004) The RNA-Induced Silencing Complex Is a Mg2+-Dependent Endonuclease. Current Biology 14: 787–791. doi: 10.1016/j.cub.2004.03.008
[25]  Schwarz DS, Hutvágner G, Haley B, Zamore PD (2002) Evidence that siRNAs Function as Guides, Not Primers, in the Drosophila and Human RNAi Pathways. Molecular Cell 10: 537–548. doi: 10.1016/S1097-2765(02)00651-2
[26]  Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318: 761–764. doi: 10.1126/science.1146484
[27]  Vagin VV (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313: 320–324. doi: 10.1126/science.1129333
[28]  Saito K (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20: 2214–2222. doi: 10.1101/gad.1454806
[29]  Shpiz S, Kwon D, Rozovsky Y, Kalmykova A (2009) rasiRNA pathway controls antisense expression of Drosophila telomeric retrotransposons in the nucleus. Nucl Acids Res 37: 268–278. doi: 10.1093/nar/gkn960
[30]  Okamura K, Balla S, Martin R, Liu N, Lai EC (2008) Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nat Struct Mol Biol 15: 581–590. doi: 10.1038/nsmb.1438
[31]  Chung W-J, Okamura K, Martin R, Lai EC (2008) Endogenous RNA Interference Provides a Somatic Defense against Drosophila Transposons. Current Biology 18: 795–802. doi: 10.1016/j.cub.2008.05.006
[32]  Ghildiyal M, Seitz H, Horwich MD, Li C, Du T, et al. (2008) Endogenous siRNAs Derived from Transposons and mRNAs in Drosophila Somatic Cells. Science 320: 1077–1081. doi: 10.1126/science.1157396
[33]  Horwich MD, Li C, Matranga C, Vagin V, Farley G, et al. (2007) The Drosophila RNA Methyltransferase, DmHen1, Modifies Germline piRNAs and Single-Stranded siRNAs in RISC. Current Biology 17: 1265–1272. doi: 10.1016/j.cub.2007.06.030
[34]  Saito K (2007) Pimet, the Drosophila homolog of HEN1, mediates 2[prime]-O-methylation of Piwi- interacting RNAs at their 3[prime] ends. Genes Dev 21: 1603–1608. doi: 10.1101/gad.1563607
[35]  Gunawardane LS (2007) A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315: 1587–1590. doi: 10.1126/science.1140494
[36]  Wu Q, Luo Y, Lu R, Lau N, Lai EC, et al. (2010) Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proceedings of the National Academy of Sciences 107: 1606–1611. doi: 10.1073/pnas.0911353107
[37]  Campbell C, Black W, Hess A, Foy B (2008) Comparative genomics of small RNA regulatory pathway components in vector mosquitoes. BMC Genomics 9: 425. doi: 10.1186/1471-2164-9-425
[38]  Li S, Mead E, Liang S, Tu Z (2009) Direct sequencing and expression analysis of a large number of miRNAs in Aedes aegypti and a multi-species survey of novel mosquito miRNAs. BMC Genomics 10: 581. doi: 10.1186/1471-2164-10-581
[39]  Skalsky R, Vanlandingham D, Scholle F, Higgs S, Cullen B (2010) Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus. BMC Genomics 11: 119. doi: 10.1186/1471-2164-11-119
[40]  Uchil PD, Satchidanandam V (2003) Architecture of the Flaviviral Replication Complex: Protease, Nuclease, and Detergents Reveal Encasement Within Double-Layered Membrane Compartments. J Biol Chem 278: 24388–24398. doi: 10.1074/jbc.M301717200
[41]  Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CKE, et al. (2009) Composition and Three-Dimensional Architecture of the Dengue Virus Replication and Assembly Sites. Cell Host Microbe 5: 365–375. doi: 10.1016/j.chom.2009.03.007
[42]  Stollar V, Stollar BD (1970) Immunochemical Measurement of Double-stranded RNA of Uninfected and Arbovirus-Infected Mammalian Cells. Proceedings of the National Academy of Sciences of the United States of America 65: 993–1000. doi: 10.1073/pnas.65.4.993
[43]  Brackney DE, Beane JE, Ebel GD (2009) RNAi Targeting of West Nile Virus in Mosquito Midguts Promotes Virus Diversification. PLoS Pathog 5: e1000502. doi: 10.1371/journal.ppat.1000502
[44]  Campbell CL, Keene KM, Brackney DE, Olson KE, Blair CD, et al. (2008) Aedes aegypti uses RNA interference in defense against Sindbis virus infection. BMC Microbiol 8: 47. doi: 10.1186/1471-2180-8-47
[45]  Myles KM, Wiley MR, Morazzani EM, Adelman ZN (2008) Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes. Proceedings of the National Academy of Sciences 105: 19938–19943. doi: 10.1073/pnas.0803408105
[46]  Keene KM, Foy BD, Sanchez-Vargas I, Beaty BJ, Blair CD, et al. (2004) RNA interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proceedings of the National Academy of Sciences of the United States of America 101: 17240–17245. doi: 10.1073/pnas.0406983101
[47]  Haley B, Tang G, Zamore P (2003) In vitro analysis of RNA interference in Drosophila melanogaster. Methods 30: 330–336. doi: 10.1016/S1046-2023(03)00052-5
[48]  Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucl Acids Res 18: 6097–6100. doi: 10.1093/nar/18.20.6097
[49]  Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: A Sequence Logo Generator. Genome Research 14: 1188–1190. doi: 10.1101/gr.849004
[50]  Miller S, Kastner S, Krijnse-Locker J, Bühler S, Bartenschlager R (2007) The Non-structural Protein 4A of Dengue Virus Is an Integral Membrane Protein Inducing Membrane Alterations in a 2K-regulated Manner. J Biol Chem 282: 8873–8882. doi: 10.1074/jbc.M609919200
[51]  Cammisa-Parks H, Cisar LA, Kane A, Stollar V (1992) The complete nucleotide sequence of cell fusing agent (CFA): Homology between the nonstructural proteins encoded by CFA and the nonstructural proteins encoded by arthropod-borne flaviviruses. Virology 189: 511–524. doi: 10.1016/0042-6822(92)90575-A
[52]  Stollar V, Thomas VL (1975) An agent in the Aedes aegypti cell line (Peleg) which causes fusion of Aedes albopictus cells. Virology 64: 367–377. doi: 10.1016/0042-6822(75)90113-0
[53]  Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, et al. (2007) Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila. Cell 128: 1089–1103. doi: 10.1016/j.cell.2007.01.043
[54]  Stollar V, Schlesinger RW, Stevens TM (1967) Studies on the nature of dengue viruses: III. RNA synthesis in cells infected with type 2 dengue virus. Virology 33: 650–658. doi: 10.1016/0042-6822(67)90065-7
[55]  Zambon RA, Vakharia VN, Wu LP (2006) RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster. Cellular Microbiology 8: 880–889. doi: 10.1111/j.1462-5822.2006.00688.x
[56]  Adelman ZN, Sanchez-Vargas I, Travanty EA, Carlson JO, Beaty BJ, et al. (2002) RNA silencing of dengue virus type 2 replication in transformed C6/36 mosquito cells transcribing an inverted-repeat RNA derived from the virus genome. J Virol 76: 12925–12933. doi: 10.1128/JVI.76.24.12925-12933.2002
[57]  Lim DH, Kim J, Kim S, Carthew RW, Lee YS (2008) Functional analysis of dicer-2 missense mutations in the siRNA pathway of Drosophila. Biochemical and Biophysical Research Communications 371: 525–530. doi: 10.1016/j.bbrc.2008.04.118
[58]  Harigaya Y, Parker R (2010) No-go decay: a quality control mechanism for RNA in translation. Wiley Interdisciplinary Reviews: RNA 1: 132–141. doi: 10.1002/wrna.17
[59]  Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10: 94–108. doi: 10.1038/nrg2504
[60]  Parameswaran P, Sklan E, Wilkins C, Burgon T, Samuel MA, et al. (2010) Six RNA Viruses and Forty-One Hosts: Viral Small RNAs and Modulation of Small RNA Repertoires in Vertebrate and Invertebrate Systems. PLoS Pathog 6: e1000764. doi: 10.1371/journal.ppat.1000764

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133