全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Preclinical Evaluation of Caprylic Acid-Fractionated IgG Antivenom for the Treatment of Taipan (Oxyuranus scutellatus) Envenoming in Papua New Guinea

DOI: 10.1371/journal.pntd.0001144

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Snake bite is a common medical emergency in Papua New Guinea (PNG). The taipan, Oxyuranus scutellatus, inflicts a large number of bites that, in the absence of antivenom therapy, result in high mortality. Parenteral administration of antivenoms manufactured in Australia is the current treatment of choice for these envenomings. However, the price of these products is high and has increased over the last 25 years; consequently the country can no longer afford all the antivenom it needs. This situation prompted an international collaborative project aimed at generating a new, low-cost antivenom against O. scutellatus for PNG. Methodology/Principal Findings A new monospecific equine whole IgG antivenom, obtained by caprylic acid fractionation of plasma, was prepared by immunising horses with the venom of O. scutellatus from PNG. This antivenom was compared with the currently used F(ab')2 monospecific taipan antivenom manufactured by CSL Limited, Australia. The comparison included physicochemical properties and the preclinical assessment of the neutralisation of lethal neurotoxicity and the myotoxic, coagulant and phospholipase A2 activities of the venom of O. scutellatus from PNG. The F(ab')2 antivenom had a higher protein concentration than whole IgG antivenom. Both antivenoms effectively neutralised, and had similar potency, against the lethal neurotoxic effect (both by intraperitoneal and intravenous routes of injection), myotoxicity, and phospholipase A2 activity of O. scutellatus venom. However, the whole IgG antivenom showed a higher potency than the F(ab')2 antivenom in the neutralisation of the coagulant activity of O. scutellatus venom from PNG. Conclusions/Significance The new whole IgG taipan antivenom described in this study compares favourably with the currently used F(ab')2 antivenom, both in terms of physicochemical characteristics and neutralising potency. Therefore, it should be considered as a promising low-cost candidate for the treatment of envenomings by O. scutellatus in PNG, and is ready to be tested in clinical trials.

References

[1]  Currie BJ, Sutherland SK, Hudson BJ, Smith AM (1991) An epidemiological study of snake bite envenomation in Papua New Guinea. Med J Aust 154: 266–168.
[2]  Lalloo DG, Trevett AJ, Korinhona A, Nwokolo N, Laurenson IF, et al. (1995) Snake bites by the Papuan taipan (Oxyuranus scutellatus canni): paralysis, hemostatic and electrocardiographic abnormalities, and effects of antivenom. Am J Trop Med Hyg 52: 525–531.
[3]  Williams D Williams DJ, Jensen SD, Nimorakiotakis B, Winkel KD, editors. (2005) Snakebite in Papua New Guinea.5–32. Venomous Bites and Stings in Papua New Guinea: A Treatment Guide for Health Workers and Doctors. Melbourne: University of Melbourne.
[4]  Williams D, Bal B (2003) Papuan taipan Oxyuranus scutellatus canni envenomation in rural Papua New Guinea. Annals of the ACTM 4: 6–9. doi: 10.1016/0041-0101(93)90247-g
[5]  McGain F, Limbo A, Williams DJ, Didei G, Winkel KD (2004) Snakebite mortality at Port Moresby General Hospital, Papua New Guinea, 1992-2001. Med J Aust 181: 687–691. doi: 10.1016/s0271-7964(08)70461-0
[6]  Wüster W, Dumbrell A, Hay C, Pook CE, Williams DJ, Fry BG (2005) Snakes across the Strait: Phylogeographic relationships in three genera of Australasian snakes (Serpentes: Elapidae: Acanthophis, Oxyuranus and Pseudechis). Mol Phylog Evol 34: 1–14. doi: 10.1016/j.ympev.2004.08.018
[7]  Doughty P, Maryan B, Donnellan SC, Hutchinson MN (2007) A new species of taipan (Elapidae: Oxyuranus) from central Australia. Zootaxa 1422: 45–58.
[8]  Lalloo DG, Trevett AJ, Owens D, Minei J, Naraqi S, et al. (1995) Coagulopathy following bites by the Papuan taipan (Oxyuranus scutellatus canni). Blood Coagul Fibrinolysis 6: 65–72. doi: 10.1097/00001721-199502000-00011
[9]  Lalloo DG, Trevett AJ, Nwokolo N, Laurenson IF, Naraqi S, et al. (1997) Electrocardiographic abnormalities in patients bitten by taipans (Oxyuranus scutellatus canni) and other elapid snakes in Papua New Guinea. Trans Royal Soc Trop Med Hyg 91: 53–56. doi: 10.1016/s0035-9203(97)90394-1
[10]  Trevett AJ, Lalloo DG, Nwokolo NC, Naraqi S, Kevau IH, et al. (1995) Electrophysiological findings in patients envenomed following the bite of a Papuan taipan (Oxyuranus scutellatus canni). Trans Royal Soc Trop Med Hyg 89: 415–417. doi: 10.1016/0035-9203(95)90035-7
[11]  Harris JB, Grubb BD, Maltin CA, Dixon R (2000) The neurotoxicity of the venom phospholipases A2, notexin and taipoxin. Exp Neurol 161: 517–526. doi: 10.1006/exnr.1999.7275
[12]  Montecucco C, Gutiérrez JM, Lomonte B (2008) Cellular pathology induced by snake venom phospholipase A2 myotoxins and neurotoxins: common aspects of their mechanisms of action. Cell Mol Life Sci 65: 2897–2912. doi: 10.1007/s00018-008-8113-3
[13]  Connolly S, Trevett AJ, Nwokolo NC, Lalloo DG, Naraqi S, et al. (1995) Neuromuscular effects of Papuan Taipan snake venom. Ann Neurol 38: 916–920. doi: 10.1002/ana.410380612
[14]  Trevett AJ, Lalloo DG, Nwokolo NC, Naraqi S, Kevau IH, et al. (1995) The efficacy of antivenom in the treatment of bites by the Papuan taipan (Oxyuranus scutellatus canni). Trans Royal Soc Trop Med Hyg 89: 322–325. doi: 10.1016/0035-9203(95)90562-6
[15]  Crachi MT, Hammer LW, Hodgson WC (1999) The effects of antivenom on the in vitro neurotoxicity of venoms from the taipans Oxyuranus scutellatus, Oxyuranus microlepidotus and Oxyuranus scutellatus canni. Toxicon 37: 1771–1778. doi: 10.1016/S0041-0101(99)00118-X
[16]  Williams DJ (2005) Snakebite in southern Papua New Guinea. Postgraduate Dissertation. School of Public Health & Tropical Medicine, James Cook University.
[17]  Warrell DA (2008) 102. : 397–399. Unscrupulous marketing of snake bite antivenoms in Africa and Papua New Guinea: choosing the right product – ‘What's in a name?’ Trans Royal Soc Trop Med Hyg.
[18]  dos Santos MC, D'Imperio-Lima MR, Furtado GC, Colletto GM, Kipnis TL, et al. (1989) Purification of F(ab')2 anti-snake venom by caprylic acid: a fast method for obtaining IgG fragments with high neutralization activity, purity and yield. Toxicon 27: 297–303. doi: 10.1016/0041-0101(89)90177-3
[19]  Rojas G, Jiménez JM, Gutiérrez JM (1994) Caprylic acid fractionation of hyperimmune horse plasma: Description of a simple procedure for antivenom production. Toxicon 32: 351–363. doi: 10.1016/0041-0101(94)90087-6
[20]  Raweerith R, Ratanabanangkoon K (2003) Fractionation of equine antivenom using caprylic acid precipitation in combination with cationic ion-exchange chromatography. J Immunol Methods 282: 63–72. doi: 10.1016/j.jim.2003.07.014
[21]  World Health Organization (2010) Guidelines for the Production, Control and Regulation of Antivenom Immunoglobulins. World Health Organization, Geneva (www.who.int/bloodproducts/snakeantivenom?s).
[22]  Otero-Pati?o R, Cardoso J L C, Higashi H G, Nú?ez V, Díaz A, et al. (1998) A randomized, blinded, comparative trial of one pepsin-digested and two whole IgG antivenoms for Bothrops snake bites in Urabá, Colombia. Am J Trop Med Hyg 58: 183–189.
[23]  Otero R, Gutiérrez JM, Rojas G, Nú?ez V, Díaz A, et al. (1999) A randomized blinded clinical trial of two antivenoms, prepared by caprylic acid or ammonium sulphate fractionation of IgG, in Bothrops and Porthidium snake bites in Colombia. Correlation between safety and biochemical characteristics of antivenoms. Toxicon 37: 895–908. doi: 10.1016/S0041-0101(98)00220-7
[24]  Otero R, León G, Gutiérrez JM, Rojas G, Toro MF, et al. (2006) Efficacy and safety of two whole IgG polyvalent antivenoms, refined by caprylic acid fractionation with or without β-propiolactone, in the treatment of Bothrops asper bites in Colombia. Trans R Soc Trop Med Hyg 100: 1173–1182. doi: 10.1016/j.trstmh.2006.01.006
[25]  Abubakar IS, Abubakar SB, Habib AG, Nasidi A, Durfa N, et al. (2010) Randomised controlled double-blind non-inferiority trial of two antivenoms for saw-scaled or carpet viper (Echis ocellatus) envenoming in Nigeria. PLoS Negl Trop Dis 4: e767. doi: 10.1371/journal.pntd.0000767
[26]  Meier J (1995) Commercially available antivenoms (“hyperimmune sera”, “antivenins”, “antisera”) for antivenom therapy. In: Meier J, White J, editors. pp. 689–721. Handbook of Clinical Toxicology of Animal Venoms and Poisons. Boca Raton: CRC Press.
[27]  Schosinsky K, Vargas M, Vinocour G, González OM, Brilla E, et al. (1983) Manual de Técnicas de Laboratorio. Química Clínica. Universidad de Costa Rica, San José.
[28]  Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685. doi: 10.1038/227680a0
[29]  Lacoste RJ, Venable SH, Stone JC (1959) Modified 4-aminoantipyrine colorimetric method for phenols. Application to an acrylic monomer. Anal Chem 31: 1246–1249. doi: 10.1021/ac60151a007
[30]  Herrera M, Meneses F, Gutiérrez JM, León G (2009) Development and validation of a reverse phase HPLC method for the determination of caprylic acid in formulations of therapeutic immunoglobulins and its application to antivenom production. Biologicals 37: 230–234. doi: 10.1016/j.biologicals.2009.02.020
[31]  World Health Organization (1981) Progress in the Characterization of Venoms and Standardization of Antivenoms. WHO Offset Publication No. 58. World Health Organization, Geneva.
[32]  Rojas E, Quesada L, Arce V, Lomonte B, Rojas G, et al. (2005) Neutralization of tour Peruvian Bothrops sp snake venoms by polyvalent antivenoms produced in Perú and Costa Rica: preclinical assessment. Acta Trop 93: 85–95. doi: 10.1016/j.actatropica.2004.09.008
[33]  Theakston RDG, Reid HA (1983) Development of simple standard assay procedures for the characterization of snake venoms. Bull World Health Org 61: 949–956.
[34]  Gené JA, Roy A, Rojas G, Gutiérrez JM, Cerdas L (1989) Comparative study on coagulant, defibrinating, fibrinolytic and fibrinogenolytic activities of Costa Rican crotaline snake venoms and their neutralization by a polyvalent antivenom. Toxicon 27: 841–848. doi: 10.1016/0041-0101(89)90096-2
[35]  Isbister GK, Woods D, Alley S, O'Leary MA, Seldon M, et al. (2010) Endogenous thrombin potential as a novel method for the characterization of procoagulant snake venoms and the efficacy of antivenom. Toxicon 56: 75–85. doi: 10.1016/j.toxicon.2010.03.013
[36]  O'Leary MA, Isbister GK (2010) A turbidimetric assay for the measurement of clotting times of procoagulant venoms in plasma. J Pharmacol Toxicol Meth 61: 27–31. doi: 10.1016/j.vascn.2009.06.004
[37]  Gutiérrez JM, Lomonte B, Chaves F, Moreno E, Cerdas L (1986) Pharmacological activities of a toxic phospholipase A isolated from the venom of the snake Bothrops asper. Comp Biochem Physiol 84C: 159–164.
[38]  Gutiérrez JM, Rojas G, Lomonte B, Gené JA, Chaves F, et al. (1990) Standardization of assays for testing the neutralizing ability of antivenoms. Toxicon 28: 1127–1129. doi: 10.1016/0041-0101(90)90110-S
[39]  Broad AJ, Sutherland SK, Coulter AR (1979) The lethality in mice of dangerous Australian and other snake venom. Toxicon 17: 661–664. doi: 10.1016/0041-0101(79)90245-9
[40]  Fohlman J, Eaker D, Karlsson E, Thesleff S (1976) Taipoxin, an extremely potent presynaptic neurotoxin from the venom of the Australian snake taipan (Oxyuranus s. scutellatus). Isolation, characterization, quaternary structure and pharmacological properties. Eur J Biochem 68: 457–469. doi: 10.1111/j.1432-1033.1976.tb10833.x
[41]  Kuruppu S, Reeve S, Banerjee Y, Kini RM, Smith I, et al. (2005) Isolation and pharmacological characterization of cannitoxin, a presynaptic neurotoxin from the venom of the Papuan taipan (Oxyuranus scutellatus canni). J Pharmacol Exp Ther 315: 1196–1202. doi: 10.1124/jpet.105.093641
[42]  Harris JB, Maltin CA (1982) Myotoxic activity of the crude venom and the principal neurotoxin, taipoxin, of the Australian taipan, Oxyuranus scutellatus. Br J Pharmacol 76: 61–75. doi: 10.1111/j.1476-5381.1982.tb09191.x
[43]  Lambeau G, Barhanin J, Schweitz H, Qar J, Lazdunski M (1989) Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom. J Biol Chem 264: 11,503-11, 510:
[44]  Lambeau G, Lazdunski M, Barhanin J (1991) Properties of receptors for neurotoxic phospholipases A2 in different tissues. Neurochem Res 16: 651–658. doi: 10.1007/BF00965551
[45]  Brown AM, Yatani A, Lacerda AE, Gurrola GB, Possani LD (1987) Neurotoxins that act selectively on voltage-dependent cardiac calcium channels. Circ Res 61: 16–19.
[46]  Possani LD, Martin BM, Yatani A, Mochca-Morales J, Zamudio FZ, et al. (1992) Isolation and physiological characterization of taicatoxin, a complex toxin with specific effects on calcium channels. Toxicon 30: 1343–1364. doi: 10.1016/0041-0101(92)90511-3
[47]  Kornhauser R, Hart AJ, Reeve S, Smith AI, Fry BG, et al. (2010) Variations in the pharmacological profile of post-synaptic neurotoxins isolated from the venoms of the Papuan (Oxyuranus scutellatus canni) and coastal (Oxyuranus scutellatus scutellatus) taipans. Neurotoxicology 31: 239–243. doi: 10.1016/j.neuro.2009.12.009
[48]  Trevett AJ, Lalloo DG, Nwokolo NC, Naraqi S, Kevau IH, et al. (1995) Failure of 3,4 diaminopyridine and edrophonium to produce significant clinical benefit in neurotoxicity following the bite of Papuan taipan (Oxyuranus scutellatus canni). Trans Royal Soc Trop Med Hyg 89: 444–446. doi: 10.1016/0035-9203(95)90051-9
[49]  Gutiérrez JM, Ownby CL (2003) Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of local and systemic myotoxicity. Toxicon 42: 915–931. doi: 10.1016/j.toxicon.2003.11.005
[50]  Roault M, Rash LD, Escoubas P, Boilard E, Bollinger J, et al. (2006) Neurotoxicity and other pharmacological activities of the snake venom phospholipase A2 OS2: the N-terminal region is more important than enzymatic activity. Biochemistry 45: 5800–5816. doi: 10.1021/bi060217r
[51]  Harris JB (1991) Phospholipases in snake venoms and their effects on nerve and muscle. In: Harvey AL, editor. New York: Pergamon Press. pp. 91–129. Snake Toxins.
[52]  Paoli M, Rigoni M, Koster G, Rossetto O, Montecucco C, et al. (2009) Mass spectrometry analysis of the phospholipase A2 activity of snake pre-synaptic neurotoxins in cultured neurons. J Neurochem 111: 737–744. doi: 10.1111/j.1471-4159.2009.06365.x
[53]  Walker FJ, Owen WG, Esmon CT (1980) Characterization of the prothrombin activator from the venom of Oxyuranus scutellatus scutellatus (taipan venom). Biochemistry 19: 1020–1023. doi: 10.1021/bi00546a029
[54]  Speijer H, Govers-Riemslag JWP, Zwaal RFA, Rosing J (1986) Prothrombin activation by an activator from the venom of Oxyuranus scutellatus (taipan snake). J Biol Chem 261: 13258–13267. doi: 10.1016/0049-3848(92)90230-8
[55]  Kini RM (2005) Serine proteases affecting blood coagulation and fibrinolysis from snake venoms. Pathophysiol Haemost Thromb 34: 200–204. doi: 10.1159/000092424
[56]  Sutherland SK, Campbell DG, Stubbs AE (1981) A study of the major Australian snake venoms in the monkey (Macaca fascicularis). II. Myolytic and haematological effects of venoms. Pathology 13: 705–715. doi: 10.3109/00313028109086644
[57]  Currie B, Vince J, Naraqi S (1988) Snake bite in Papua New Guinea. PNG Med J 31: 195–198.
[58]  Williams DJ (2007) Proposal for establishment of a national antivenom unit: Submission to the Government of the Independent State of Papua New Guinea. 150 p. Australian Venom Research Unit, University of Melbourne.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133