全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Identification of Attractive Drug Targets in Neglected-Disease Pathogens Using an In Silico Approach

DOI: 10.1371/journal.pntd.0000804

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The increased sequencing of pathogen genomes and the subsequent availability of genome-scale functional datasets are expected to guide the experimental work necessary for target-based drug discovery. However, a major bottleneck in this has been the difficulty of capturing and integrating relevant information in an easily accessible format for identifying and prioritizing potential targets. The open-access resource TDRtargets.org facilitates drug target prioritization for major tropical disease pathogens such as the mycobacteria Mycobacterium leprae and Mycobacterium tuberculosis; the kinetoplastid protozoans Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi; the apicomplexan protozoans Plasmodium falciparum, Plasmodium vivax, and Toxoplasma gondii; and the helminths Brugia malayi and Schistosoma mansoni. Methodology/Principal Findings Here we present strategies to prioritize pathogen proteins based on whether their properties meet criteria considered desirable in a drug target. These criteria are based upon both sequence-derived information (e.g., molecular mass) and functional data on expression, essentiality, phenotypes, metabolic pathways, assayability, and druggability. This approach also highlights the fact that data for many relevant criteria are lacking in less-studied pathogens (e.g., helminths), and we demonstrate how this can be partially overcome by mapping data from homologous genes in well-studied organisms. We also show how individual users can easily upload external datasets and integrate them with existing data in TDRtargets.org to generate highly customized ranked lists of potential targets. Conclusions/Significance Using the datasets and the tools available in TDRtargets.org, we have generated illustrative lists of potential drug targets in seven tropical disease pathogens. While these lists are broadly consistent with the research community's current interest in certain specific proteins, and suggest novel target candidates that may merit further study, the lists can easily be modified in a user-specific manner, either by adjusting the weights for chosen criteria or by changing the criteria that are included.

References

[1]  Nwaka S, Hudson A (2006) Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov 5: 941–955. doi: 10.1038/nrd2144
[2]  Anishetty S, Pulimi M, Pennathur G (2005) Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis. Comput Biol Chem 29: 368–378. doi: 10.1016/j.compbiolchem.2005.07.001
[3]  Caffrey CR, Rohwer A, Oellien F, Marhofer RJ, Braschi S, et al. (2009) A comparative chemogenomics strategy to predict potential drug targets in the metazoan pathogen, Schistosoma mansoni. PLoS One 4: e4413. doi: 10.1371/journal.pone.0004413
[4]  Hasan S, Daugelat S, Rao PS, Schreiber M (2006) Prioritizing genomic drug targets in pathogens: application to Mycobacterium tuberculosis. PLoS Comput Biol 2: e61. doi: 10.1371/journal.pcbi.0020061
[5]  Krasky A, Rohwer A, Schroeder J, Selzer PM (2007) A combined bioinformatics and chemoinformatics approach for the development of new antiparasitic drugs. Genomics 89: 36–43. doi: 10.1016/j.ygeno.2006.09.008
[6]  Kumar S, Chaudhary K, Foster JM, Novelli JF, Zhang Y, et al. (2007) Mining predicted essential genes of Brugia malayi for nematode drug targets. PLoS One 2: e1189. doi: 10.1371/journal.pone.0001189
[7]  Murphy DJ, Brown JR (2007) Identification of gene targets against dormant phase Mycobacterium tuberculosis infections. BMC Infect Dis 7: 84. doi: 10.1186/1471-2334-7-84
[8]  Raman K, Yeturu K, Chandra N (2008) targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst Biol 2: 109. doi: 10.1186/1752-0509-2-109
[9]  Murry JP, Sassetti CM, Lane JM, Xie Z, Rubin EJ (2008) Transposon site hybridization in Mycobacterium tuberculosis. Methods Mol Biol 416: 45–59. doi: 10.1007/978-1-59745-321-9_4
[10]  Tsolaki AG, Hirsh AE, DeRiemer K, Enciso JA, Wong MZ, et al. (2004) Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc Natl Acad Sci U S A 101: 4865–4870. doi: 10.1073/pnas.0305634101
[11]  Tarun AS, Peng X, Dumpit RF, Ogata Y, Silva-Rivera H, et al. (2008) A combined transcriptome and proteome survey of malaria parasite liver stages. Proc Natl Acad Sci U S A 105: 305–310. doi: 10.1073/pnas.0710780104
[12]  Yeh I, Altman RB (2006) Drug Targets for Plasmodium falciparum: a post-genomic review/survey. Mini Rev Med Chem 6: 177–202. doi: 10.2174/138955706775475957
[13]  Chavali AK, Whittemore JD, Eddy JA, Williams KT, Papin JA (2008) Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol Syst Biol 4: 177. doi: 10.1038/msb.2008.15
[14]  Aguero F, Al-Lazikani B, Aslett M, Berriman M, Buckner FS, et al. (2008) Genomic-scale prioritization of drug targets: the TDR Targets database. Nat Rev Drug Discov 7: 900–907. doi: 10.1038/nrd2684
[15]  Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, et al. (2010) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38: D457–462. doi: 10.1093/nar/gkp851
[16]  Zerlotini A, Heiges M, Wang H, Moraes RL, Dominitini AJ, et al. (2009) SchistoDB: a Schistosoma mansoni genome resource. Nucleic Acids Res 37: D579–582. doi: 10.1093/nar/gkn681
[17]  Tweedie S, Ashburner M, Falls K, Leyland P, McQuilton P, et al. (2009) FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids Res 37: D555–559. doi: 10.1093/nar/gkn788
[18]  Chen F, Mackey AJ, Stoeckert CJ Jr, Roos DS (2006) OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 34: D363–368. doi: 10.1093/nar/gkj123
[19]  Chang A, Scheer M, Grote A, Schomburg I, Schomburg D (2009) BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res 37: D588–592. doi: 10.1093/nar/gkn820
[20]  Pieper U, Eswar N, Webb BM, Eramian D, Kelly L, et al. (2009) MODBASE, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 37: D347–354. doi: 10.1093/nar/gkn791
[21]  Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, et al. (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460: 352–358. doi: 10.1038/nature08160
[22]  Chen F, Mackey AJ, Vermunt JK, Roos DS (2007) Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS One 2: e383. doi: 10.1371/journal.pone.0000383
[23]  Sakharkar KR, Sakharkar MK, Chow VT (2004) A novel genomics approach for the identification of drug targets in pathogens, with special reference to Pseudomonas aeruginosa. In Silico Biol 4: 355–360.
[24]  Doyle MA, Gasser RB, Woodcroft BJ, Hall RS, Ralph SA (2010) Drug target prediction and prioritization: using orthology to predict essentiality in parasite genomes. BMC Genomics 11: 222. doi: 10.1186/1471-2164-11-222
[25]  Adane L, Patel DS, Bharatam PV (2010) Shape- and chemical feature-based 3D-pharmacophore model generation and virtual screening: identification of potential leads for P. falciparum DHFR enzyme inhibition. Chem Biol Drug Des 75: 115–126. doi: 10.1111/j.1747-0285.2009.00908.x
[26]  Joubert F, Neitz AW, Louw AI (2001) Structure-based inhibitor screening: a family of sulfonated dye inhibitors for malaria parasite triosephosphate isomerase. Proteins 45: 136–143. doi: 10.1002/prot.1133
[27]  Kapoor N, Banerjee T, Babu P, Maity K, Surolia N, et al. (2009) Design, development, synthesis, and docking analysis of 2′-substituted triclosan analogs as inhibitors for Plasmodium falciparum enoyl-ACP reductase. IUBMB Life 61: 1083–1091. doi: 10.1002/iub.258
[28]  Subba Rao G, Vijayakrishnan R, Kumar M (2008) Structure-based design of a novel class of potent inhibitors of InhA, the enoyl acyl carrier protein reductase from Mycobacterium tuberculosis: a computer modelling approach. Chem Biol Drug Des 72: 444–449. doi: 10.1111/j.1747-0285.2008.00722.x
[29]  Nilsson MT, Krajewski WW, Yellagunda S, Prabhumurthy S, Chamarahally GN, et al. (2009) Structural basis for the inhibition of Mycobacterium tuberculosis glutamine synthetase by novel ATP-competitive inhibitors. J Mol Biol 393: 504–513. doi: 10.1016/j.jmb.2009.08.028
[30]  Oliveira JS, Mendes MA, Palma MS, Basso LA, Santos DS (2003) One-step purification of 5-enolpyruvylshikimate-3-phosphate synthase enzyme from Mycobacterium tuberculosis. Protein Expr Purif 28: 287–292. doi: 10.1016/S1046-5928(02)00708-8
[31]  Albert MA, Haanstra JR, Hannaert V, Van Roy J, Opperdoes FR, et al. (2005) Experimental and in silico analyses of glycolytic flux control in bloodstream form Trypanosoma brucei. J Biol Chem 280: 28306–28315. doi: 10.1074/jbc.M502403200
[32]  Caceres AJ, Michels PA, Hannaert V (2010) Genetic validation of aldolase and glyceraldehyde-3-phosphate dehydrogenase as drug targets in Trypanosoma brucei. Mol Biochem Parasitol 169: 50–54. doi: 10.1016/j.molbiopara.2009.09.001
[33]  Sharlow ER, Lyda TA, Dodson HC, Mustata G, Morris MT, et al. (2010) A target-based high throughput screen yields Trypanosoma brucei hexokinase small molecule inhibitors with antiparasitic activity. PLoS Negl Trop Dis 4: e659. doi: 10.1371/journal.pntd.0000659
[34]  Tonkin CJ, Kalanon M, McFadden GI (2008) Protein targeting to the malaria parasite plastid. Traffic 9: 166–175. doi: 10.1111/j.1600-0854.2007.00660.x
[35]  Foth BJ, Ralph SA, Tonkin CJ, Struck NS, Fraunholz M, et al. (2003) Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299: 705–708. doi: 10.1126/science.1078599
[36]  Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, et al. (2009) PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res 37: D539–543. doi: 10.1093/nar/gkn814
[37]  Mehlin C, Boni E, Buckner FS, Engel L, Feist T, et al. (2006) Heterologous expression of proteins from Plasmodium falciparum: results from 1000 genes. Mol Biochem Parasitol 148: 144–160. doi: 10.1016/j.molbiopara.2006.03.011
[38]  Haag J, O'HUigin C, Overath P (1998) The molecular phylogeny of trypanosomes: evidence for an early divergence of the Salivaria. Mol Biochem Parasitol 91: 37–49. doi: 10.1016/S0166-6851(97)00185-0
[39]  Lynch M, Katju V (2004) The altered evolutionary trajectories of gene duplicates. Trends Genet 20: 544–549. doi: 10.1016/j.tig.2004.09.001
[40]  Atwood JA 3rd, Weatherly DB, Minning TA, Bundy B, Cavola C, et al. (2005) The Trypanosoma cruzi proteome. Science 309: 473–476. doi: 10.1126/science.1110289
[41]  Caceres AJ, Quinones W, Gualdron M, Cordeiro A, Avilan L, et al. (2007) Molecular and biochemical characterization of novel glucokinases from Trypanosoma cruzi and Leishmania spp. Mol Biochem Parasitol 156: 235–245. doi: 10.1016/j.molbiopara.2007.08.007
[42]  Coppens I, Courtoy PJ (2000) The adaptative mechanisms of Trypanosoma brucei for sterol homeostasis in its different life-cycle environments. Annu Rev Microbiol 54: 129–156. doi: 10.1146/annurev.micro.54.1.129
[43]  Williams RA, Westrop GD, Coombs GH (2009) Two pathways for cysteine biosynthesis in Leishmania major. Biochem J 420: 451–462. doi: 10.1042/BJ20082441
[44]  Agarwal SM, Jain R, Bhattacharya A, Azam A (2008) Inhibitors of Escherichia coli serine acetyltransferase block proliferation of Entamoeba histolytica trophozoites. Int J Parasitol 38: 137–141. doi: 10.1016/j.ijpara.2007.09.009
[45]  Lamichhane G, Zignol M, Blades NJ, Geiman DE, Dougherty A, et al. (2003) A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 100: 7213–7218. doi: 10.1073/pnas.1231432100
[46]  Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48: 77–84. doi: 10.1046/j.1365-2958.2003.03425.x
[47]  Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100: 12989–12994. doi: 10.1073/pnas.2134250100
[48]  Rengarajan J, Bloom BR, Rubin EJ (2005) Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A 102: 8327–8332. doi: 10.1073/pnas.0503272102
[49]  Kouranov A, Xie L, de la Cruz J, Chen L, Westbrook J, et al. (2006) The RCSB PDB information portal for structural genomics. Nucleic Acids Res 34: D302–305. doi: 10.1093/nar/gkj120
[50]  Overington J (2009) ChEMBL. An interview with John Overington, team leader, chemogenomics at the European Bioinformatics Institute Outstation of the European Molecular Biology Laboratory (EMBL-EBI). Interview by Wendy A. Warr. J Comput Aided Mol Des 23: 195–198. doi: 10.1007/s10822-009-9260-9
[51]  Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1: 727–730. doi: 10.1038/nrd892
[52]  Merritt EA, Arakaki TL, Gillespie JR, Larson ET, Kelley A, et al. Crystal structures of trypanosomal histidyl-tRNA synthetase illuminate differences between eukaryotic and prokaryotic homologs. J Mol Biol 397: 481–494. doi: 10.1016/j.jmb.2010.01.051
[53]  Robinson MW, McFerran N, Trudgett A, Hoey L, Fairweather I (2004) A possible model of benzimidazole binding to beta-tubulin disclosed by invoking an inter-domain movement. J Mol Graph Model 23: 275–284. doi: 10.1016/j.jmgm.2004.08.001
[54]  Fetterer RH, Pax RA, Bennett JL (1981) Na+-K+ transport, motility and tegumental membrane potential in adult male Schistosoma mansoni. Parasitology 82: 97–109. doi: 10.1017/S0031182000041895
[55]  Vandewaa EA, Mills G, Chen GZ, Foster LA, Bennett JL (1989) Physiological role of HMG-CoA reductase in regulating egg production by Schistosoma mansoni. Am J Physiol 257: R618–625.
[56]  Mather MW, Henry KW, Vaidya AB (2007) Mitochondrial drug targets in apicomplexan parasites. Curr Drug Targets 8: 49–60. doi: 10.2174/138945007779315632
[57]  Martin RJ (1997) Modes of action of anthelmintic drugs. Vet J 154: 11–34. doi: 10.1016/S1090-0233(05)80005-X
[58]  Holden-Dye L, O'Connor V, Hopper NA, Walker RJ, Harder A, et al. (2007) SLO, SLO, quick, quick, slow: calcium-activated potassium channels as regulators of Caenorhabditis elegans behaviour and targets for anthelmintics. Invert Neurosci 7: 199–208. doi: 10.1007/s10158-007-0057-z
[59]  Hwang HY, Ullman B (1997) Genetic analysis of purine metabolism in Leishmania donovani. J Biol Chem 272: 19488–19496. doi: 10.1074/jbc.272.31.19488
[60]  Vaughan AM, O'Neill MT, Tarun AS, Camargo N, Phuong TM, et al. (2009) Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell Microbiol 11: 506–520. doi: 10.1111/j.1462-5822.2008.01270.x
[61]  Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, et al. (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301: 1503–1508. doi: 10.1126/science.1087025

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133