Background Controversy persists about the optimal approach to drug-based control of schistosomiasis in high-risk communities. In a systematic review of published studies, we examined evidence for incremental benefits from repeated praziquantel dosing, given 2 to 8 weeks after an initial dose, in Schistosoma-endemic areas of Africa. Methodology/Principal Findings We performed systematic searches of electronic databases PubMed and EMBASE for relevant data using search terms ‘schistosomiasis’, ‘dosing’ and ‘praziquantel’ and hand searches of personal collections and bibliographies of recovered articles. In 10 reports meeting study criteria, improvements in parasitological treatment outcomes after two doses of praziquantel were greater for S. mansoni infection than for S. haematobium infection. Observed cure rates (positive to negative conversion in egg detection assays) were, for S. mansoni, 69–91% cure after two doses vs. 42–79% after one dose and, for S. haematobium, 46–99% cure after two doses vs. 37–93% after a single dose. Treatment benefits in terms of reduction in intensity (mean egg count) were also different for the two species—for S. mansoni, the 2-dose regimen yielded an weighted average 89% reduction in standardized egg counts compared to a 83% reduction after one dose; for S. haematobium, two doses gave a 93% reduction compared to a 94% reduction with a single dose. Cost-effectiveness analysis was performed based on Markov life path modeling. Conclusions/Significance Although schedules for repeated treatment with praziquantel require greater inputs in terms of direct costs and community participation, there are incremental benefits to this approach at an estimated cost of $153 (S. mansoni)–$211 (S. haematobium) per additional lifetime QALY gained by double treatment in school-based programs. More rapid reduction of infection-related disease may improve program adherence, and if, as an externality of the program, transmission can be reduced through more effective coverage, significant additional benefits are expected to accrue in the targeted communities.
References
[1]
King CH (2010) Parasites and poverty: the case of schistosomiasis. Acta Trop 113: 95–104. doi: 10.1016/j.actatropica.2009.11.012
[2]
WHO (2009) Preventive Chemotherapy Databank [online]. Available from URL: http://www.who.int/neglected_diseases/pr?eventive_chemotherapy/databank/en/index.?html [Accessed 2011 Aug 3].
[3]
van der Werf MJ, de Vlas SJ (2001) Morbidity and infection with schistosomes or soil-transmitted helminths. Report for WHO Parasitic Diseases and Vector Contol. Rotterdam: Erasmus University. pp. 1–103.
[4]
King CH, Mahmoud AA (1989) Drugs five years later: praziquantel. Ann Intern Med 110: 290–296. doi: 10.7326/0003-4819-110-4-290
[5]
Fenwick A, Webster JP, Bosque-Oliva E, Blair L, Fleming FM, et al. (2009) The Schistosomiasis Control Initiative (SCI): rationale, development and implementation from 2002–2008. Parasitology 136: 1719–1730. doi: 10.1017/S0031182009990400
[6]
Garba A, Toure S, Dembele R, Boisier P, Tohon Z, et al. (2009) Present and future schistosomiasis control activities with support from the Schistosomiasis Control Initiative in West Africa. Parasitology 136: 1731–1737. doi: 10.1017/S0031182009990369
[7]
Kabatereine NB, Brooker S, Koukounari A, Kazibwe F, Tukahebwa EM, et al. (2007) Impact of a national helminth control programme on infection and morbidity in Ugandan schoolchildren. Bull World Health Organ 85: 91–99. doi: 10.2471/BLT.06.030353
[8]
Koukounari A, Gabrielli AF, Toure S, Bosque-Oliva E, Zhang Y, et al. (2007) Schistosoma haematobium infection and morbidity before and after large-scale administration of praziquantel in Burkina Faso. J Infect Dis 196: 659–669. doi: 10.1086/520515
[9]
Satayathum SA, Muchiri EM, Ouma JH, Whalen CC, King CH (2006) Factors affecting infection or reinfection with Schistosoma haematobium in coastal Kenya: survival analysis during a nine-year, school-based treatment program. Am J Trop Med Hyg 75: 83–92.
[10]
Utzinger J, Keiser J, Shuhua X, Tanner M, Singer BH (2003) Combination chemotherapy of schistosomiasis in laboratory studies and clinical trials. Antimicrob Agents Chemother 47: 1487–1495. doi: 10.1128/AAC.47.5.1487-1495.2003
[11]
Gryseels B, Mbaye A, De Vlas SJ, Stelma FF, Guisse F, et al. (2001) Are poor responses to praziquantel for the treatment of Schistosoma mansoni infections in Senegal due to resistance? An overview of the evidence. Tropical Medicine and International Health 6: 864–873. doi: 10.1046/j.1365-3156.2001.00811.x
[12]
Barakat R, Morshedy HE (2010) Efficacy of two praziquantel treatments among primary school children in an area of high Schistosoma mansoni endemicity, Nile Delta, Egypt. Parasitology 1–7. doi: 10.1017/s003118201000154x
[13]
Black CL, Steinauer ML, Mwinzi PN, Evan Secor W, Karanja DM, et al. (2009) Impact of intense, longitudinal retreatment with praziquantel on cure rates of schistosomiasis mansoni in a cohort of occupationally exposed adults in western Kenya. Trop Med Int Health 14: 450–457. doi: 10.1111/j.1365-3156.2009.02234.x
[14]
Kabatereine NB, Kemijumbi J, Ouma JH, Sturrock RF, Butterworth AE, et al. (2003) Efficacy and side effects of praziquantel treatment in a highly endemic Schistosoma mansoni focus at Lake Albert, Uganda. Trans R Soc Trop Med Hyg 97: 599–603. doi: 10.1016/S0035-9203(03)80044-5
[15]
Mduluza T, Ndhlovu PD, Madziwa TM, Midzi N, Zinyama R, et al. (2001) The impact of repeated treatment with praziquantel of schistosomiasis in children under six years of age living in an endemic area for Schistosoma haematobium infection. Mem Inst Oswaldo Cruz 96: Suppl157–164. doi: 10.1590/S0074-02762001000900024
[16]
Midzi N, Sangweme D, Zinyowera S, Mapingure MP, Brouwer KC, et al. (2008) Efficacy and side effects of praziquantel treatment against Schistosoma haematobium infection among primary school children in Zimbabwe. Trans R Soc Trop Med Hyg 102: 759–766. doi: 10.1016/j.trstmh.2008.03.010
[17]
N'Goran EK, Gnaka HN, Tanner M, Utzinger J (2003) Efficacy and side-effects of two praziquantel treatments against Schistosoma haematobium infection, among schoolchildren from Cote d'Ivoire. Ann Trop Med Parasitol 97: 37–51. doi: 10.1179/000349803125002553
[18]
Picquet M, Vercruysse J, Shaw DJ, Diop M, Ly A (1998) Efficacy of praziquantel against Schistosoma mansoni in northern Senegal. Trans R Soc Trop Med Hyg 92: 90–93. doi: 10.1016/S0035-9203(98)90971-3
[19]
Sacko M, Magnussen P, Traore M, Landoure A, Doucoure A, et al. (2009) The effect of single dose versus two doses of praziquantel on Schistosoma haematobium infection and pathology among school-aged children in Mali. Parasitology 136: 1851–1857. doi: 10.1017/S0031182008000486
[20]
Tchuente LA, Shaw DJ, Polla L, Cioli D, Vercruysse J (2004) Efficacy of praziquantel against Schistosoma haematobium infection in children. Am J Trop Med Hyg 71: 778–782.
[21]
Utzinger J, N'Goran EK, N'Dri A, Lengeler C, Tanner M (2000) Efficacy of praziquantel against Schistosoma mansoni with particular consideration for intensity of infection. Trop Med Int Health 5: 771–778. doi: 10.1046/j.1365-3156.2000.00646.x
[22]
Singer BH, Ryff CD (2007) Neglected tropical diseases, neglected data sources, and neglected issues. PLoS Negl Trop Dis 1: e104. doi: 10.1371/journal.pntd.0000104
[23]
WHO (2002) Prevention and control of schistosomiasis and soil-transmitted helminthiasis: report of a WHO expert committee. Technical Report Series 912. Geneva: World Health Organization. pp. 1–57.
[24]
Petitti DB (2000) Meta-Analysis, Decision Analysis and Cost-Effectiveness Analysis. Oxford, UK: Oxford University Press.
[25]
Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21: 1539–1558. doi: 10.1002/sim.1186
Ndyomugyenyi R, Kabatereine N (2003) Integrated community-directed treatment for the control of onchocerciasis, schistosomiasis and intestinal helminths infections in Uganda: advantages and disadvantages. Trop Med Int Health 8: 997–1004. doi: 10.1046/j.1360-2276.2003.01124.x
[28]
King CH (2006) Long-term outcomes of school-based treatment for control of urinary schistosomiasis: a review of experience in Coast Province, Kenya. Mem Inst Oswaldo Cruz 101: 299–306. doi: 10.1590/S0074-02762006000900047
[29]
King CH, Muchiri E, Ouma JH, Koech D (1991) Chemotherapy-based control of schistosomiasis haematobia. IV. Impact of repeated annual chemotherapy on prevalence and intensity of Schistosoma haematobium infection in an endemic area of Kenya. Am J Trop Med Hyg 45: 498–508.
[30]
King CH, Muchiri EM, Ouma JH (1992) Age-targeted chemotherapy for control of urinary schistosomiasis in endemic populations. Mem Inst Oswaldo Cruz 87: 203–210. doi: 10.1590/S0074-02761992000800031
[31]
Goldman AS, Guisinger VH, Aikins M, Amarillo ML, Belizario VY, et al. (2007) National mass drug administration costs for lymphatic filariasis elimination. PLoS Negl Trop Dis 1: e67. doi: 10.1371/journal.pntd.0000067
[32]
Gold MR, Siegel JE, Russell LB, Weinstein MC (1996) Cost-Effectiveness in Health and Medicine. New York: Oxford University Press. 425 p.
[33]
Finkelstein JL, Schleinitz M, Carabin H, McGarvey ST (2008) Decision-model estimation of the age-specific disability weight for schistosomiasis japonica. PLoS Negl Trop Dis 2: e158. doi: 10.1371/journal.pntd.0000158
[34]
Jia T-W, Zhou X-N, Wang X-H, Utzinger J, Steinmann P, et al. (2007) Assessment of the age-specific disability weight of chronic schistosomiasis japonica. Bull World Health Organ 85: 458–465. doi: 10.2471/BLT.06.033035
[35]
King CH, Dickman K, Tisch DJ (2005) Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 365: 1561–1569. doi: 10.1016/S0140-6736(05)66457-4
[36]
Gryseels B (1989) The relevance of schistosomiasis for public health. Trop Med Parasitol 40: 134–142.
[37]
Coutinho HM, Leenstra T, Acosta LP, Su L, Jarilla B, et al. (2006) Pro-inflammatory cytokines and C-reactive protein are associated with undernutrition in the context of Schistosoma japonicum infection. Am J Trop Med Hyg 75: 720–726.
[38]
Coutinho HM, McGarvey ST, Acosta LP, Manalo DL, Langdon GC, et al. (2005) Nutritional status and serum cytokine profiles in children, adolescents, and young adults with Schistosoma japonicum-associated hepatic fibrosis, in Leyte, Philippines. J Infect Dis 192: 528–536. doi: 10.1086/430929
[39]
King CL, Malhotra I, Mungai P, Wamachi A, Kioko J, et al. (2001) Schistosoma haematobium-induced urinary tract morbidity correlates with increased tumor necrosis factor-alpha and diminished interleukin-10 production. J Infect Dis 184: 1176–1182. doi: 10.1086/323802
[40]
Leenstra T, Coutinho HM, Acosta LP, Langdon GC, Su L, et al. (2006) Schistosoma japonicum reinfection after praziquantel treatment causes anemia associated with inflammation. Infect Immun 74: 6398–6407. doi: 10.1128/IAI.00757-06
[41]
Wamachi AN, Mayadev JS, Mungai PL, Magak PL, Ouma JH, et al. (2004) Increased ratio of tumor necrosis factor-alpha to interleukin-10 production is associated with Schistosoma haematobium-induced urinary-tract morbidity. J Infect Dis 190: 2020–2030. doi: 10.1086/425579
[42]
Clements AC, Lwambo NJ, Blair L, Nyandindi U, Kaatano G, et al. (2006) Bayesian spatial analysis and disease mapping: tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania. Trop Med Int Health 11: 490–503. doi: 10.1111/j.1365-3156.2006.01594.x
[43]
Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J (2006) Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 6: 411–425. doi: 10.1016/S1473-3099(06)70521-7
[44]
Liang S, Yang C, Zhong B, Qiu D (2006) Re-emerging schistosomiasis in hilly and mountainous areas of Sichuan, China. Bull World Health Organ 84: 139–144. doi: /S0042-96862006000200015
[45]
Aryeetey ME, Aholu C, Wagatsuma Y, Bentil G, Nkrumah FK, et al. (1999) Health education and community participation in the control of urinary schistosomiasis in Ghana. East Afr Med J 76: 324–329.
[46]
Gabrielli AF, Toure S, Sellin B, Sellin E, Ky C, et al. (2006) A combined school- and community-based campaign targeting all school-age children of Burkina Faso against schistosomiasis and soil-transmitted helminthiasis: performance, financial costs and implications for sustainability. Acta Trop 99: 234–242. doi: 10.1016/j.actatropica.2006.08.008
[47]
Mafe MA, Appelt B, Adewale B, Idowu ET, Akinwale OP, et al. (2005) Effectiveness of different approaches to mass delivery of praziquantel among school-aged children in rural communities in Nigeria. Acta Trop 93: 181–190. doi: 10.1016/j.actatropica.2004.11.004
[48]
Garber AM, Phelps CE (1997) Economic foundations of cost-effectiveness analysis. J Health Econ 16: 1–31. doi: 10.1016/S0167-6296(96)00506-1
[49]
Goldie SJ, Yazdanpanah Y, Losina E, Weinstein MC, Anglaret X, et al. (2006) Cost-effectiveness of HIV treatment in resource-poor settings–the case of Cote d'Ivoire. N Engl J Med 355: 1141–1153. doi: 10.1056/NEJMsa060247
[50]
Murray CJ, Lauer JA, Hutubessy RC, Niessen L, Tomijima N, et al. (2003) Effectiveness and costs of interventions to lower systolic blood pressure and cholesterol: a global and regional analysis on reduction of cardiovascular-disease risk. Lancet 361: 717–725. doi: 10.1016/S0140-6736(03)12655-4
[51]
WHO (2001) Macroeconomics and health: investing in health for economic development. Report of the Commission on Macroeconomics and Health. Geneva: WHO.
[52]
CIA (2011) The world factbook: Kenya [online]. Available from URL: https://www.cia.gov/library/publications?/the-world-factbook/geos/ke.html [Accessed 2011 Aug 3].
[53]
King CH, Lombardi G, Lombardi C, Greenblatt R, Hodder S, et al. (1988) Chemotherapy-based control of schistosomiasis haematobia. I. Metrifonate versus praziquantel in control of intensity and prevalence of infection. Am J Trop Med Hyg 39: 295–305.
[54]
Muchiri EM, Ouma JH, King CH (1996) Dynamics and control of Schistosoma haematobium transmission in Kenya: an overview of the Msambweni Project. Am J Trop Med Hyg 55: 127–134.
[55]
King CH, Muchiri EM, Ouma JH (2000) Evidence against rapid emergence of praziquantel resistance in Schistosoma haematobium, Kenya. Emerging Infectious Diseases 6: 585–594. doi: 10.3201/eid0606.000606
[56]
Chan MS, Nsowah-Nuamah NN, Adjei S, Wen ST, Hall A, et al. (1998) Predicting the impact of school-based treatment for urinary schistosomiasis given by the Ghana Partnership for Child Development. Trans R Soc Trop Med Hyg 92: 386–389. doi: 10.1016/S0035-9203(98)91057-4
[57]
Chan MS, Montresor A, Savioli L, Bundy DA (1999) Planning chemotherapy based schistosomiasis control: validation of a mathematical model using data on Schistosoma haematobium from Pemba, Tanzania. Epidemiol Infect 123: 487–497. doi: 10.1017/S0950268899003167
[58]
Nsowah-Nuamah NN, Aryeetey ME, Jolayemi ET, Wagatsuma Y, Mensah G, et al. (2004) Predicting the timing of second praziquantel treatment and its effect on reduction of egg counts in southern Ghana. Acta Trop 90: 263–270. doi: 10.1016/j.actatropica.2002.03.001
[59]
King CH, Dangerfield-Cha M (2008) The unacknowledged impact of chronic schistosomiasis. Chronic Illness 4: 65–79. doi: 10.1177/1742395307084407