Background Rift Valley fever virus (RVFV) causes disease in livestock and humans. It can be transmitted by mosquitoes, inhalation or physical contact with the body fluids of infected animals. Severe clinical cases are characterized by acute hepatitis with hemorrhage, meningoencephalitis and/or retinitis. The dynamics of RVFV infection and the cell types infected in vivo are poorly understood. Methodology/Principal Findings RVFV strains expressing humanized Renilla luciferase (hRLuc) or green fluorescent protein (GFP) were generated and inoculated to susceptible Ifnar1-deficient mice. We investigated the tissue tropism in these mice and the nature of the target cells in vivo using whole-organ imaging and flow cytometry. After intraperitoneal inoculation, hRLuc signal was observed primarily in the thymus, spleen and liver. Macrophages infiltrating various tissues, in particular the adipose tissue surrounding the pancreas also expressed the virus. The liver rapidly turned into the major luminescent organ and the mice succumbed to severe hepatitis. The brain remained weakly luminescent throughout infection. FACS analysis in RVFV-GFP-infected mice showed that the macrophages, dendritic cells and granulocytes were main target cells for RVFV. The crucial role of cells of the monocyte/macrophage/dendritic lineage during RVFV infection was confirmed by the slower viral dissemination, decrease in RVFV titers in blood, and prolonged survival of macrophage- and dendritic cell-depleted mice following treatment with clodronate liposomes. Upon dermal and nasal inoculations, the viral dissemination was primarily observed in the lymph node draining the injected ear and in the lungs respectively, with a significant increase in survival time. Conclusions/Significance These findings reveal the high levels of phagocytic cells harboring RVFV during viral infection in Ifnar1-deficient mice. They demonstrate that bioluminescent and fluorescent viruses can shed new light into the pathogenesis of RVFV infection.
References
[1]
Moutailler S, Krida G, Schaffner F, Vazeille M, Failloux AB (2008) Potential vectors of Rift Valley fever virus in the Mediterranean region. Vector Borne Zoonotic Dis 8: 749–753. doi: 10.1089/vbz.2008.0009
[2]
Hoogstraal H, Meegan JM, Khalil GM, Adham FK (1979) The Rift Valley fever epizootic in Egypt 1977–78. 2. Ecological and entomological studies. Trans R Soc Trop Med Hyg 73: 624–629. doi: 10.1016/0035-9203(79)90005-1
[3]
Traore-Lamizana M, Fontenille D, Diallo M, Ba Y, Zeller HG, et al. (2001) Arbovirus surveillance from 1990 to 1995 in the Barkedji area (Ferlo) of Senegal, a possible natural focus of Rift Valley fever virus. J Med Entomol 38: 480–492. doi: 10.1603/0022-2585-38.4.480
[4]
Meegan JM (1979) The Rift Valley fever epizootic in Egypt 1977–78. 1. Description of the epizzotic and virological studies. Trans R Soc Trop Med Hyg 73: 618–623. doi: 10.1016/0035-9203(79)90004-X
[5]
Saluzzo JF, Digoutte JP, Chartier C, Martinez D, Bada R (1987) Focus of Rift Valley fever virus transmission in southern Mauritania. Lancet 1: 504. doi: 10.1016/S0140-6736(87)92110-6
[6]
Sissoko D, Giry C, Gabrie P, Tarantola A, Pettinelli F, et al. (2009) Rift Valley fever, Mayotte, 2007–2008. Emerg Infect Dis 15: 568–570. doi: 10.3201/eid1504.081045
[7]
Abdel-Wahab KS, El Baz LM, El-Tayeb EM, Omar H, Ossman MA, et al. (1978) Rift Valley Fever virus infections in Egypt: Pathological and virological findings in man. Trans R Soc Trop Med Hyg 72: 392–396. doi: 10.1016/0035-9203(78)90134-7
[8]
Laughlin LW, Meegan JM, Strausbaugh LJ, Morens DM, Watten RH (1979) Epidemic Rift Valley fever in Egypt: observations of the spectrum of human illness. Trans R Soc Trop Med Hyg 73: 630–633. doi: 10.1016/0035-9203(79)90006-3
[9]
Siam AL, Meegan JM, Gharbawi KF (1980) Rift Valley fever ocular manifestations: observations during the 1977 epidemic in Egypt. Br J Ophthalmol 64: 366–374. doi: 10.1136/bjo.64.5.366
[10]
Woods CW, Karpati AM, Grein T, McCarthy N, Gaturuku P, et al. (2002) An outbreak of Rift Valley fever in Northeastern Kenya, 1997–98. Emerg Infect Dis 8: 138–144. doi: 10.3201/eid0802.010023
[11]
Bird BH, Bawiec DA, Ksiazek TG, Shoemaker TR, Nichol ST (2007) Highly sensitive and broadly reactive quantitative reverse transcription-PCR assay for high-throughput detection of Rift Valley fever virus. J Clin Microbiol 45: 3506–3513. doi: 10.1128/JCM.00936-07
[12]
Njenga MK, Paweska J, Wanjala R, Rao CY, Weiner M, et al. (2009) Using a field quantitative real-time PCR test to rapidly identify highly viremic rift valley fever cases. J Clin Microbiol 47: 1166–1171. doi: 10.1128/JCM.01905-08
[13]
Coetzer JA (1982) The pathology of Rift Valley fever. II. Lesions occurring in field cases in adult cattle, calves and aborted foetuses. Onderstepoort J Vet Res 49: 11–17.
[14]
Coetzer JA, Ishak KG (1982) Sequential development of the liver lesions in new-born lambs infected with Rift Valley fever virus. I. Macroscopic and microscopic pathology. Onderstepoort J Vet Res 49: 103–108.
[15]
Rippy MK, Topper MJ, Mebus CA, Morrill JC (1992) Rift Valley fever virus-induced encephalomyelitis and hepatitis in calves. Vet Pathol 29: 495–502. doi: 10.1177/030098589202900602
[16]
Mims CA (1956) Rift Valley Fever virus in mice. III. Further quantitative features of the infective process. Br J Exp Pathol 37: 120–128.
[17]
do Valle T, Billecocq A, Guillemot L, Alberts R, Gommet C, et al. (2010) A New Mouse Model Reveals a Critical Role of Host Innate Immunity in Resistance to Rift Valley Fever. J Immunol 185: 6146–6156. doi: 10.4049/jimmunol.1000949
[18]
Bouloy M, Janzen C, Vialat P, Khun H, Pavlovic J, et al. (2001) Genetic evidence for an interferon-antagonistic function of rift valley fever virus nonstructural protein NSs. J Virol 75: 1371–1377. doi: 10.1128/JVI.75.3.1371-1377.2001
[19]
McGavran MH, Easterday BC (1963) Rift Valley Fever Virus Hepatitis: Light and Electron Microscopic Studies in the Mouse. Am J Pathol 42: 587–607.
[20]
Mims CA (1957) Rift Valley fever virus in mice. VI. Histological changes in the liver in relation to virus multiplication. Aust J Exp Biol Med Sci 35: 595–604. doi: 10.1038/icb.1957.61
[21]
Smith DR, Steele KE, Shamblin J, Honko A, Johnson J, et al. (2010) The pathogenesis of Rift Valley fever virus in the mouse model. Virology 407: 256–267. doi: 10.1016/j.virol.2010.08.016
[22]
Naslund J, Lagerqvist N, Lundkvist A, Evander M, Ahlm C, et al. (2008) Kinetics of Rift Valley Fever Virus in experimentally infected mice using quantitative real-time RT-PCR. J Virol Methods 151: 277–282. doi: 10.1016/j.jviromet.2008.04.007
[23]
Bouloy M, Flick R (2009) Reverse genetics technology for Rift Valley fever virus: current and future applications for the development of therapeutics and vaccines. Antiviral Res 84: 101–118. doi: 10.1016/j.antiviral.2009.08.002
[24]
Billecocq A, Gauliard N, Le May N, Elliott RM, Flick R, et al. (2008) RNA polymerase I-mediated expression of viral RNA for the rescue of infectious virulent and avirulent Rift Valley fever viruses. Virology 378: 377–384. doi: 10.1016/j.virol.2008.05.033
[25]
Gauliard N, Billecocq A, Flick R, Bouloy M (2006) Rift Valley fever virus noncoding regions of L, M and S segments regulate RNA synthesis. Virology 351: 170–179. doi: 10.1016/j.virol.2006.03.018
[26]
Habjan M, Penski N, Spiegel M, Weber F (2008) T7 RNA polymerase-dependent and -independent systems for cDNA-based rescue of Rift Valley fever virus. J Gen Virol 89: 2157–2166. doi: 10.1099/vir.0.2008/002097-0
[27]
Bird BH, Albarino CG, Hartman AL, Erickson BR, Ksiazek TG, et al. (2008) Rift valley fever virus lacking the NSs and NSm genes is highly attenuated, confers protective immunity from virulent virus challenge, and allows for differential identification of infected and vaccinated animals. J Virol 82: 2681–2691. doi: 10.1128/JVI.02501-07
[28]
Bird BH, Albarino CG, Nichol ST (2007) Rift Valley fever virus lacking NSm proteins retains high virulence in vivo and may provide a model of human delayed onset neurologic disease. Virology 362: 10–15. doi: 10.1016/j.virol.2007.01.046
[29]
Gerrard SR, Bird BH, Albarino CG, Nichol ST (2007) The NSm proteins of Rift Valley fever virus are dispensable for maturation, replication and infection. Virology 359: 459–465. doi: 10.1016/j.virol.2006.09.035
[30]
Morrill JC, Ikegami T, Yoshikawa-Iwata N, Lokugamage N, Won S, et al. (2010) Rapid accumulation of virulent rift valley Fever virus in mice from an attenuated virus carrying a single nucleotide substitution in the m RNA. PloS one 5: e9986. doi: 10.1371/journal.pone.0009986
[31]
Ikegami T, Won S, Peters CJ, Makino S (2006) Rescue of infectious rift valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene. J Virol 80: 2933–2940. doi: 10.1128/JVI.80.6.2933-2940.2006
[32]
Kuri T, Habjan M, Penski N, Weber F (2010) Species-independent bioassay for sensitive quantification of antiviral type I interferons. Virol J 7: 50. doi: 10.1186/1743-422X-7-50
[33]
Muller R, Saluzzo JF, Lopez N, Dreier T, Turell M, et al. (1995) Characterization of clone 13, a naturally attenuated avirulent isolate of Rift Valley fever virus, which is altered in the small segment. Am J Trop Med Hyg 53: 405–411.
[34]
Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, et al. (1994) Functional role of type I and type II interferons in antiviral defense. Science 264: 1918–1921. doi: 10.1126/science.8009221
[35]
Ito N, Takayama-Ito M, Yamada K, Hosokawa J, Sugiyama M, et al. (2003) Improved recovery of rabies virus from cloned cDNA using a vaccinia virus-free reverse genetics system. Microbiol Immunol 47: 613–617.
[36]
Flick R, Pettersson RF (2001) Reverse genetics system for Uukuniemi virus (Bunyaviridae): RNA polymerase I-catalyzed expression of chimeric viral RNAs. J Virol 75: 1643–1655. doi: 10.1128/JVI.75.4.1643-1655.2001
[37]
Luker GD, Leib DA (2005) Luciferase real-time bioluminescence imaging for the study of viral pathogenesis. Methods Mol Biol 292: 285–296. doi: 10.1385/1-59259-848-x:285
[38]
Zhao H, Doyle TC, Wong RJ, Cao Y, Stevenson DK, et al. (2004) Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals. Mol imaging 3: 43–54. doi: 10.1162/153535004773861714
[39]
Bhaumik S, Gambhir SS (2002) Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci U S A 99: 377–382. doi: 10.1073/pnas.012611099
[40]
Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4: 235–260. doi: 10.1146/annurev.bioeng.4.111901.093336
[41]
Rogers KL, Stinnakre J, Agulhon C, Jublot D, Shorte SL, et al. (2005) Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters. Eur J Neurosci 21: 597–610. doi: 10.1111/j.1460-9568.2005.03871.x
[42]
Van Rooijen N, Sanders A (1994) Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 174: 83–93. doi: 10.1016/0022-1759(94)90012-4
[43]
Van Rooijen N, Van Nieuwmegen R (1984) Elimination of phagocytic cells in the spleen after intravenous injection of liposome-encapsulated dichloromethylene diphosphonate. An enzyme-histochemical study. Cell Tissue Res 238: 355–358. doi: 10.1007/bf00217308
[44]
Liu K, Nussenzweig MC (2010) Origin and development of dendritic cells. Immunol Rev 234: 45–54. doi: 10.1111/j.0105-2896.2009.00879.x
[45]
Van Rooijen N, Sanders A, van den Berg TK (1996) Apoptosis of macrophages induced by liposome-mediated intracellular delivery of clodronate and propamidine. J Immunol Methods 193: 93–99. doi: 10.1016/0022-1759(96)00056-7
[46]
Fink K, Ng C, Nkenfou C, Vasudevan SG, van Rooijen N, et al. (2009) Depletion of macrophages in mice results in higher dengue virus titers and highlights the role of macrophages for virus control. Eur J Immunol 39: 2809–2821. doi: 10.1002/eji.200939389
[47]
Cook SH, Griffin DE (2003) Luciferase imaging of a neurotropic viral infection in intact animals. J Virol 77: 5333–5338. doi: 10.1128/JVI.77.9.5333-5338.2003
[48]
Manicassamy B, Manicassamy S, Belicha-Villanueva A, Pisanelli G, Pulendran B, et al. (2010) Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proc Natl Acad Sci U S A 107: 11531–11536. doi: 10.1073/pnas.0914994107
[49]
Anderson GW Jr, Slone TW Jr, Peters CJ (1987) Pathogenesis of Rift Valley fever virus (RVFV) in inbred rats. Microb Pathog 2: 283–293. doi: 10.1016/0882-4010(87)90126-4
Peters CJ, Anderson J (1981) Pathogenesis of Rift Valley Fever. Contr Epidem Biostatist 3: 21.
[52]
Lewis RM, Morrill JC, Jahrling PB, Cosgriff TM (1989) Replication of hemorrhagic fever viruses in monocytic cells. Rev Infect Dis 11: Suppl 4S736–742. doi: 10.1093/clinids/11.Supplement_4.S736
[53]
Rosebrock JA, Peters CJ (1982) Cellular resistance to Rift Valley fever virus (RVFV) infection in cultured macrophages and fibroblasts from genetically resistant and susceptible rats. In Vitro 18: 308.
[54]
Brown JL, Dominik JW, Morrissey RL (1981) Respiratory infectivity of a recently isolated Egyptian strain of Rift Valley fever virus. Infect Immun 33: 848–853.
[55]
Zuniga EI, Hahm B, Oldstone MB (2007) Type I interferon during viral infections: multiple triggers for a multifunctional mediator. Curr Top Microbiol Immunol 316: 337–357. doi: 10.1007/978-3-540-71329-6_16
[56]
Ryman KD, Klimstra WB, Nguyen KB, Biron CA, Johnston RE (2000) Alpha/beta interferon protects adult mice from fatal Sindbis virus infection and is an important determinant of cell and tissue tropism. J Virol 74: 3366–3378. doi: 10.1128/JVI.74.7.3366-3378.2000
[57]
Cervantes-Barragan L, Kalinke U, Zust R, Konig M, Reizis B, et al. (2009) Type I IFN-mediated protection of macrophages and dendritic cells secures control of murine coronavirus infection. J Immunol 182: 1099–1106.
[58]
Samuel MA, Diamond MS (2005) Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J Virol 79: 13350–13361. doi: 10.1128/JVI.79.21.13350-13361.2005
[59]
Wessely R, Klingel K, Knowlton KU, Kandolf R (2001) Cardioselective infection with coxsackievirus B3 requires intact type I interferon signaling: implications for mortality and early viral replication. Circulation 103: 756–761. doi: 10.1161/01.CIR.103.5.756
[60]
Ida-Hosonuma M, Iwasaki T, Yoshikawa T, Nagata N, Sato Y, et al. (2005) The alpha/beta interferon response controls tissue tropism and pathogenicity of poliovirus. J Virol 79: 4460–4469. doi: 10.1128/JVI.79.7.4460-4469.2005