全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Genetic Knockdown and Pharmacological Inhibition of Parasite Multidrug Resistance Transporters Disrupts Egg Production in Schistosoma mansoni

DOI: 10.1371/journal.pntd.0001425

Full-Text   Cite this paper   Add to My Lib

Abstract:

P-glycoprotein (Pgp) and multidrug resistance-associated proteins (MRPs) are ATP-dependent transporters involved in efflux of toxins and xenobiotics from cells. When overexpressed, these transporters can mediate multidrug resistance (MDR) in mammalian cells, and changes in Pgp expression and sequence are associated with drug resistance in helminths. In addition to the role they play in drug efflux, MDR transporters are essential components of normal cellular physiology, and targeting them may prove a useful strategy for development of new therapeutics or of compounds that enhance the efficacy of current anthelmintics. We previously showed that expression of Schistosoma mansoni MDR transporters increases in response to praziquantel (PZQ), the current drug of choice against schistosomiasis, and that reduced PZQ sensitivity correlates with higher levels of these parasite transporters. We have also shown that PZQ inhibits transport by SMDR2, a Pgp orthologue from S. mansoni, and that PZQ is a likely substrate of SMDR2. Here, we examine the physiological roles of SMDR2 and SmMRP1 (the S. mansoni orthologue of MRP1) in S. mansoni adults, using RNAi to knock down expression, and pharmacological agents to inhibit transporter function. We find that both types of treatments disrupt parasite egg deposition by worms in culture. Furthermore, administration of different MDR inhibitors to S. mansoni-infected mice results in a reduction in egg burden in host liver. These schistosome MDR transporters therefore appear to play essential roles in parasite egg production, and can be targeted genetically and pharmacologically. Since eggs are responsible for the major pathophysiological consequences of schistosomiasis, and since they are also the agents for transmission of the disease, these results suggest a potential strategy for reducing disease pathology and spread.

References

[1]  Hotez PJ, Fenwick A (2009) Schistosomiasis in Africa: an emerging tragedy in our new global health decade. PLoS Negl Trop Dis 3: e485. doi: 10.1371/journal.pntd.0000485
[2]  King CH, Dangerfield-Cha M (2008) The unacknowledged impact of chronic schistosomiasis. Chronic Illn 4: 65–79. doi: 10.1177/1742395307084407
[3]  van der Werf MJ, de Vlas SJ, Brooker S, Looman CW, Nagelkerke NJ, et al. (2003) Quantification of clinical morbidity associated with schistosome infection in sub-Saharan Africa. Acta Trop 86: 125–139. doi: 10.1016/S0001-706X(03)00029-9
[4]  Kusel JR, McVeigh P, Thornhill JA (2009) The schistosome excretory system: a key to regulation of metabolism, drug excretion and host interaction. Trends Parasitol 25: 353–358. doi: 10.1016/j.pt.2009.05.003
[5]  Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM (2003) P-glycoprotein: from genomics to mechanism. Oncogene 22: 7468–7485. doi: 10.1038/sj.onc.1206948
[6]  Gimenez-Bonafe P, Guillen Canovas A, Ambrosio S, Tortosa A, Perez-Tomas R (2008) Drugs modulating MDR. In: Colabufo NA, editor. Kerala, India: Research Signpost. pp. 63–99.
[7]  Johnstone RW, Ruefli AA, Smyth MJ (2000) Multiple physiological functions for multidrug transporter P-glycoprotein? Trends Biochem Sci 25: 1–6. doi: 10.1016/S0968-0004(99)01493-0
[8]  Mizutani T, Masuda M, Nakai E, Furumiya K, Togawa H, et al. (2008) Genuine functions of P-glycoprotein (ABCB1). Curr Drug Metab 9: 167–174. doi: 10.2174/138920008783571756
[9]  Yabe T, Suzuki N, Furukawa T, Ishihara T, Katsura I (2005) Multidrug resistance-associated protein MRP-1 regulates dauer diapause by its export activity in Caenorhabditis elegans. Development 132: 3197–3207. doi: 10.1242/dev.01909
[10]  Johnstone RW, Ruefli AA, Tainton KM, Smyth MJ (2000) A role for P-glycoprotein in regulating cell death. Leuk Lymphoma 38: 1–11. doi: 10.3109/10428190009060314
[11]  van de Ven R, Oerlemans R, van der Heijden JW, Scheffer GL, de Gruijl TD, et al. (2009) ABC drug transporters and immunity: novel therapeutic targets in autoimmunity and cancer. J Leukocyte Biol 86: 1075–1087. doi: 10.1189/jlb.0309147
[12]  Gottesman MM, Ling V (2006) The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett 580: 998–1009. doi: 10.1016/j.febslet.2005.12.060
[13]  Blackhall WJ, Liu HY, Xu M, Prichard RK, Beech RN (1998) Selection at a P-glycoprotein gene in ivermectin- and moxidectin-selected strains of Haemonchus contortus. Mol Biochem Parasitol 95: 193–201. doi: 10.1016/S0166-6851(98)00087-5
[14]  Blackhall WJ, Prichard RK, Beech RN (2008) P-glycoprotein selection in strains of Haemonchus contortus resistant to benzimidazoles. Vet Parasitol 152: 101–107. doi: 10.1016/j.vetpar.2007.12.001
[15]  Ardelli BF, Guerriero SB, Prichard RK (2006) Ivermectin imposes selection pressure on P-glycoprotein from Onchocerca volvulus: linkage disequilibrium and genotype diversity. Parasitology 132: 375–386. doi: 10.1017/S0031182005008991
[16]  Ardelli BF, Guerriero SB, Prichard RK (2005) Genomic organization and effects of ivermectin selection on Onchocerca volvulus P-glycoprotein. Mol Biochem Parasitol 143: 58–66. doi: 10.1016/j.molbiopara.2005.05.006
[17]  Bartley DJ, McAllister H, Bartley Y, Dupuy J, Menez C, et al. (2009) P-glycoprotein interfering agents potentiate ivermectin susceptibility in ivermectin sensitive and resistant isolates of Teladorsagia circumcincta and Haemonchus contortus. Parasitology 136: 1081–1088. doi: 10.1017/S0031182009990345
[18]  Sangster NC, Bannan SC, Weiss AS, Nulf SC, Klein RD, et al. (1999) Haemonchus contortus: sequence heterogeneity of internucleotide binding domains from P-glycoproteins. Exp Parasitol 91: 250–257. doi: 10.1006/expr.1998.4373
[19]  Xu M, Molento M, Blackhall W, Ribeiro P, Beech R, et al. (1998) Ivermectin resistance in nematodes may be caused by alteration of P-glycoprotein homolog. Mol Biochem Parasitol 91: 327–335. doi: 10.1016/S0166-6851(97)00215-6
[20]  Kumkate S, Chunchob S, Janvilisri T (2008) Expression of ATP-binding cassette multidrug transporters in the giant liver fluke Fasciola gigantica and their possible involvement in the transport of bile salts and anthelmintics. Mol Cell Biochem 317: 77–84. doi: 10.1007/s11010-008-9833-2
[21]  Messerli SM, Kasinathan RS, Morgan W, Spranger S, Greenberg RM (2009) Schistosoma mansoni P-glycoprotein levels increase in response to praziquantel exposure and correlate with reduced praziquantel susceptibility. Mol Biochem Parasitol 167: 54–59. doi: 10.1016/j.molbiopara.2009.04.007
[22]  Bourguinat C, Keller K, Blagburn B, Schenker R, Geary TG, et al. (2011) Correlation between loss of efficacy of macrocyclic lactone heartworm anthelmintics and P-glycoprotein genotype. Vet Parasitol 176: 374–381. doi: 10.1016/j.vetpar.2011.01.024
[23]  James CE, Hudson AL, Davey MW (2009) An update on P-glycoprotein and drug resistance in Schistosoma mansoni. Trends Parasitol 25: 538–539. doi: 10.1016/j.pt.2009.09.007
[24]  James CE, Hudson AL, Davey MW (2009) Drug resistance mechanisms in helminths: is it survival of the fittest? Trends Parasitol 25: 328–335. doi: 10.1016/j.pt.2009.04.004
[25]  Jones PM, George AM (2005) Multidrug resistance in parasites: ABC transporters, P-glycoproteins and molecular modelling. Int J Parasitol 35: 555–566. doi: 10.1016/j.ijpara.2005.01.012
[26]  Kerboeuf D, Blackhall W, Kaminsky R, von Samson-Himmelstjerna G (2003) P-glycoprotein in helminths: function and perspectives for anthelmintic treatment and reversal of resistance. Int J Antimicrob Agents 22: 332–346. doi: 10.1016/S0924-8579(03)00221-8
[27]  Lespine A, Alvinerie M, Vercruysse J, Prichard RK, Geldhof P (2008) ABC transporter modulation: a strategy to enhance the activity of macrocyclic lactone anthelmintics. Trends Parasitol 24: 293–298. doi: 10.1016/j.pt.2008.03.011
[28]  Andrews P (1985) Praziquantel: mechanisms of anti-schistosomal activity. Pharmacol Ther 29: 129–156. doi: 10.1016/0163-7258(85)90020-8
[29]  Cioli D, Pica-Mattoccia L (2003) Praziquantel. Parasitol Res 90 Supp 1: S3–9.
[30]  Mutapi F, Rujeni N, Bourke C, Mitchell K, Appleby L, et al. (2011) Schistosoma haematobium treatment in 1–5 year old children: safety and efficacy of the antihelminthic drug praziquantel. PLoS Negl Trop Dis 5: e1143. doi: 10.1371/journal.pntd.0001143
[31]  Xiao SH, Catto BA, Webster LT (1985) Effects of praziquantel on different developmental stages of Schistosoma mansoni in vitro and in vivo. J Infect Dis 151: 1130–1137. doi: 10.1093/infdis/151.6.1130
[32]  Sabah AA, Fletcher C, Webbe G, Doenhoff MJ (1986) Schistosoma mansoni: chemotherapy of infections of different ages. Exp Parasitol 61: 294–303. doi: 10.1016/0014-4894(86)90184-0
[33]  Pica-Mattoccia L, Cioli D (2004) Sex- and stage-related sensitivity of Schistosoma mansoni to in vivo and in vitro praziquantel treatment. Int J Parasitol 34: 527–533. doi: 10.1016/j.ijpara.2003.12.003
[34]  Doenhoff MJ, Cioli D, Utzinger J (2008) Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr Opin Infect Dis 21: 659–667. doi: 10.1097/QCO.0b013e328318978f
[35]  Greenberg RM (2005) Are Ca2+ channels targets of praziquantel action? Int J Parasitol 35: 1–9. doi: 10.1016/j.ijpara.2004.09.004
[36]  Day TA, Botros S (2006) Drug resistance in schistosomes. In: Maule A, Marks NJ, editors. Parasitic Flatworms: Molecular Biology, Biochemistry, Immunology and Physiology. Oxfordshire, UK: CAB International. pp. 256–268.
[37]  Doenhoff MJ, Pica-Mattoccia L (2006) Praziquantel for the treatment of schistosomiasis: its use for control in areas with endemic disease and prospects for drug resistance. Expert Rev Anti Infect Ther 4: 199–210. doi: 10.1586/14787210.4.2.199
[38]  Melman SD, Steinauer ML, Cunningham C, Kubatko LS, Mwangi IN, et al. (2009) Reduced susceptibility to praziquantel among naturally occurring Kenyan isolates of Schistosoma mansoni. PLoS Negl Trop Dis 3: e504. doi: 10.1371/journal.pntd.0000504
[39]  Aragon AD, Imani RA, Blackburn VR, Cupit PM, Melman SD, et al. (2009) Towards an understanding of the mechanism of action of praziquantel. Mol Biochem Parasitol 164: 57–65. doi: 10.1016/j.molbiopara.2008.11.007
[40]  Gobert GN (2010) Applications for profiling the schistosome transcriptome. Trends Parasitol 26: 434–439. doi: 10.1016/j.pt.2010.04.009
[41]  Bosch IB, Wang ZX, Tao LF, Shoemaker CB (1994) Two Schistosoma mansoni cDNAs encoding ATP-binding cassette (ABC) family proteins. Mol Biochem Parasitol 65: 351–356. doi: 10.1016/0166-6851(94)90085-X
[42]  Kasinathan RS, Morgan WM, Greenberg RM (2010) Schistosoma mansoni express higher levels of multidrug resistance-associated protein 1 (SmMRP1) in juvenile worms and in response to praziquantel. Mol Biochem Parasitol 173: 25–31. doi: 10.1016/j.molbiopara.2010.05.003
[43]  Kasinathan RS, Goronga T, Messerli SM, Webb TR, Greenberg RM (2010) Modulation of a Schistosoma mansoni multidrug transporter by the antischistosomal drug praziquantel. FASEB J 24: 128–135. doi: 10.1096/fj.09-137091
[44]  Kasinathan RS, Greenberg RM (2011) Pharmacology and potential physiological significance of schistosome multidrug resistance transporters. Exp Parasitol in press.
[45]  Freitas TC, Jung E, Pearce EJ (2007) TGF-β signaling controls embryo development in the parasitic flatworm Schistosoma mansoni. PLoS Pathog 3: e52. doi: 10.1371/journal.ppat.0030052
[46]  Walter M, Kuris A (2003) Methods for the inhibition of egg production in trematodes. US Patent Number 6,514,963 B2:
[47]  Cornwell MM, Pastan I, Gottesman MM (1987) Certain calcium channel blockers bind specifically to multidrug-resistant human KB carcinoma membrane vesicles and inhibit drug binding to P-glycoprotein. J Biol Chem 262: 2166–2170.
[48]  Safa AR (1988) Photoaffinity labeling of the multidrug-resistance-related P-glycoprotein with photoactive analogs of verapamil. Proc Natl Acad Sci U S A 85: 187–191. doi: 10.1073/pnas.85.19.7187
[49]  Varma MV, Ashokraj Y, Dey CS, Panchagnula R (2003) P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement. Pharmacol Res 48: 347–359. doi: 10.1016/S1043-6618(03)00158-0
[50]  Kim YK, Song YJ, Seo DW, Kang DW, Lee HY, et al. (2007) Reversal of multidrug resistance by 4-chloro-N-(3-((E)-3-(4-hydroxy-3-methox?yphenyl)acryloyl)phenyl)benzamidethrough the reversible inhibition of P-glycoprotein. Biochem Biophys Res Commun 355: 136–142. doi: 10.1016/j.bbrc.2007.01.117
[51]  Fox E, Bates SE (2007) Tariquidar (XR9576): a P-glycoprotein drug efflux pump inhibitor. Expert Rev Anticancer Ther 7: 447–459. doi: 10.1586/14737140.7.4.447
[52]  Roe M, Folkes A, Ashworth P, Brumwell J, Chima L, et al. (1999) Reversal of P-glycoprotein mediated multidrug resistance by novel anthranilamide derivatives. Bioorg Med Chem Lett 9: 595–600. doi: 10.1016/S0960-894X(99)00030-X
[53]  Mistry P, Stewart AJ, Dangerfield W, Okiji S, Liddle C, et al. (2001) In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator, XR9576. Cancer Res 61: 749–758.
[54]  Kannan P, Telu S, Shukla S, Ambudkar SV, Pike VW, et al. (2011) The “specific” P-glycoprotein inhibitor tariquidar is also a substrate and an inhibitor for Breast Cancer Resistance Protein (BCRP/ABCG2). ACS Chem Neurosci 2: 82–89. doi: 10.1021/cn100078a
[55]  Leier I, Jedlitschky G, Buccholz U, Cole SP, Deeley RG, et al. (1994) The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem 269: 27807–27810.
[56]  Chappell LH, Thomson AW, Barker GC, Smith SW (1987) Dosage, timing, and route of administration of cyclosporin A and nonimmunosuppressive derivatives of dihydrocyclosporin A and cyclosporin C against Schistosoma mansoni in vivo and in vitro. Antimicrob Agents Chemother 31: 1567–1571. doi: 10.1128/AAC.31.10.1567
[57]  Brannan LR, Chappell LH, Woo J, Thomson AW (1989) Anti-schistosomal activity of cyclosporin A: studies on murine spleen cells and the influence of a cyclosporin antagonist on resistance to infection. Immunology 67: 382–387.
[58]  Khattab A, Pica-Mattoccia L, Klinkert MQ, Wenger R, Cioli D (1998) Cyclosporins: lack of correlation between antischistosomal properties and inhibition of cyclophilin isomerase activity. Exp Parasitol 90: 103–109. doi: 10.1006/expr.1998.4307
[59]  Nilsson LA, Lindblad R, Olling S, Ouchterlony O (1985) The effect of cyclosporin A on the course of murine infection by Schistosoma mansoni. Parasite Immunol 7: 19–27. doi: 10.1111/j.1365-3024.1985.tb00476.x
[60]  Metzger JM, Peterson LB (1988) Cyclosporin A enhances the pulmonary granuloma response induced by Schistosoma mansoni eggs. Immunopharmacology 15: 103–115. doi: 10.1016/0162-3109(88)90057-4
[61]  Anuchapreeda S, Leechanachai P, Smith MM, Ambudkar SV, Limtrakul PN (2002) Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells. Biochem Pharmacol 64: 573–582. doi: 10.1016/S0006-2952(02)01224-8
[62]  Chearwae W, Anuchapreeda S, Nandigama K, Ambudkar SV, Limtrakul P (2004) Biochemical mechanism of modulation of human P-glycoprotein (ABCB1) by curcumin I, II, and III purified from turmeric powder. Biochem Pharmacol 68: 2043–2052. doi: 10.1016/j.bcp.2004.07.009
[63]  Limtrakul P, Anuchapreeda S, Buddhasukh D (2004) Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids. BMC Cancer 4: 13. doi: 10.1186/1471-2407-4-13
[64]  Magalhaes LG, Machado CB, Morais ER, Moreira EB, Soares CS, et al. (2009) In vitro schistosomicidal activity of curcumin against Schistosoma mansoni adult worms. Parasitol Res 104: 1197–1201. doi: 10.1007/s00436-008-1311-y
[65]  LoVerde PT, Osman A, Hinck A (2007) Schistosoma mansoni: TGF-β Signaling Pathways. Exp Parasitol 117: 304–317. doi: 10.1016/j.exppara.2007.06.002
[66]  Gray DJ, McManus DP, Li Y, Williams GM, Bergquist R, et al. (2010) Schistosomiasis elimination: lessons from the past guide the future. Lancet Infect Dis 10: 733–736. doi: 10.1016/S1473-3099(10)70099-2
[67]  Lewis FA (1998) Schistosomiasis. In: Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W, et al., editors. Current Protocols in Immunology. pp. 19.11.11–19.11.28.
[68]  Krautz-Peterson G, Radwanska M, Ndegwa D, Shoemaker CB, Skelly PJ (2007) Optimizing gene suppression in schistosomes using RNA interference. Molec Biochem Parasitol 153: 194–202. doi: 10.1016/j.molbiopara.2007.03.006
[69]  Ndegwa D, Krautz-Peterson G, Skelly PJ (2007) Protocols for gene silencing in schistosomes. Exp Parasitol 117: 284–291. doi: 10.1016/j.exppara.2007.07.012
[70]  Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols 3: 1101–1108. doi: 10.1038/nprot.2008.73
[71]  Jurberg AD, Goncalves T, Costa TA, de Mattos AC, Pascarelli BM, et al. (2009) The embryonic development of Schistosoma mansoni eggs: proposal for a new staging system. Dev Genes Evol 219: 219–234. doi: 10.1007/s00427-009-0285-9
[72]  Beckmann S, Buro C, Dissous C, Hirzmann J, Grevelding CG (2010) The Syk kinase SmTK4 of Schistosoma mansoni is involved in the regulation of spermatogenesis and oogenesis. PloS Pathog 6: e1000769. doi: 10.1371/journal.ppat.1000769
[73]  Neves RH, de Lamare Biolchini C, Machado-Silva JR, Carvalho JJ, Branquinho TB, et al. (2005) A new description of the reproductive system of Schistosoma mansoni (Trematoda: Schistosomatidae) analyzed by confocal laser scanning microscopy. Parasitol Res 95: 43–49. doi: 10.1007/s00436-004-1241-2
[74]  Leptak CL, McKerrow JH (1997) Schistosome egg granulomas and hepatic expression of TNF-alpha are dependent on immune priming during parasite maturation. J Immunol 158: 301–307.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133