Background Developing intervention strategies for the control of parasitic nematodes continues to be a significant challenge. Genomic and post-genomic approaches play an increasingly important role for providing fundamental molecular information about these parasites, thus enhancing basic as well as translational research. Here we report a comprehensive genome-wide survey of the developmental transcriptome of the human filarial parasite Brugia malayi. Methodology/Principal Findings Using deep sequencing, we profiled the transcriptome of eggs and embryos, immature (≤3 days of age) and mature microfilariae (MF), third- and fourth-stage larvae (L3 and L4), and adult male and female worms. Comparative analysis across these stages provided a detailed overview of the molecular repertoires that define and differentiate distinct lifecycle stages of the parasite. Genome-wide assessment of the overall transcriptional variability indicated that the cuticle collagen family and those implicated in molting exhibit noticeably dynamic stage-dependent patterns. Of particular interest was the identification of genes displaying sex-biased or germline-enriched profiles due to their potential involvement in reproductive processes. The study also revealed discrete transcriptional changes during larval development, namely those accompanying the maturation of MF and the L3 to L4 transition that are vital in establishing successful infection in mosquito vectors and vertebrate hosts, respectively. Conclusions/Significance Characterization of the transcriptional program of the parasite's lifecycle is an important step toward understanding the developmental processes required for the infectious cycle. We find that the transcriptional program has a number of stage-specific pathways activated during worm development. In addition to advancing our understanding of transcriptome dynamics, these data will aid in the study of genome structure and organization by facilitating the identification of novel transcribed elements and splice variants.
References
[1]
Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, et al. (2007) Draft Genome of the Filarial Nematode Parasite Brugia malayi. Science 317: 1756–1760. doi: 10.1126/science.1145406
[2]
Griffiths KG, Mayhew GF, Zink RL, Erickson SM, Fuchs JF, et al. (2009) Use of microarray hybridization to identify Brugia genes involved in mosquito infectivity. Parasitol Res 106: 227–235. doi: 10.1007/s00436-009-1655-y
[3]
Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159. doi: 10.1006/abio.1987.9999
[4]
Kent WJ (2002) BLAT–the BLAST-like alignment tool. Genome Res 12: 656–664. doi: 10.1101/gr.229202. Article published online before March 2002
Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25. doi: 10.1186/gb-2009-10-3-r25
[7]
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079. doi: 10.1093/bioinformatics/btp352
[8]
Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18: 1851–1858. doi: 10.1101/gr.078212.108
[9]
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: 621–628. doi: 10.1038/nmeth.1226
[10]
Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11: R25. doi: 10.1186/gb-2010-11-3-r25
[11]
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140. doi: 10.1093/bioinformatics/btp616
[12]
Oshlack A, Wakefield MJ (2009) Transcript length bias in RNA-seq data confounds systems biology. Biol Direct 4: 14. doi: 10.1186/1745-6150-4-14
[13]
Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11: R14. doi: 10.1186/gb-2010-11-2-r14
[14]
Camon E, Magrane M, Barrell D, Lee V, Dimmer E, et al. (2004) The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res 32: D262–266. doi: 10.1093/nar/gkh021
[15]
Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10: 57–63. doi: 10.1038/nrg2484
[16]
Frand AR, Russel S, Ruvkun G (2005) Functional genomic analysis of C. elegans molting. PLoS Biol 3: e312. doi: 10.1371/journal.pbio.0030312
[17]
Craig H, Isaac RE, Brooks DR (2007) Unravelling the moulting degradome: new opportunities for chemotherapy? Trends Parasitol 23: 248–253. doi: 10.1016/j.pt.2007.04.003
[18]
Boag PR, Ren P, Newton SE, Gasser RB (2003) Molecular characterisation of a male-specific serine/threonine phosphatase from Oesophagostomum dentatum (Nematoda: Strongylida), and functional analysis of homologues in Caenorhabditis elegans. Int J Parasitol 33: 313–325. doi: 10.1016/S0020-7519(02)00263-1
[19]
Li BW, Rush AC, Jiang DJ, Mitreva M, Abubucker S, et al. (2011) Gender-associated genes in filarial nematodes are important for reproduction and potential intervention targets. PLoS Negl Trop Dis 5: e947. doi: 10.1371/journal.pntd.0000947
[20]
Nisbet AJ, Cottee PA, Gasser RB (2008) Genomics of reproduction in nematodes: prospects for parasite intervention? Trends Parasitol 24: 89–95. doi: 10.1016/j.pt.2007.12.001
[21]
Bennuru S, Meng Z, Ribeiro JM, Semnani RT, Ghedin E, et al. (2011) Stage-specific proteomic expression patterns of the human filarial parasite Brugia malayi and its endosymbiont Wolbachia. Proc Natl Acad Sci U S A 108: 9649–9654. doi: 10.1073/pnas.1011481108
[22]
Reinke V, Gil IS, Ward S, Kazmer K (2004) Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development 131: 311–323. doi: 10.1242/dev.00914
[23]
Li BW, Rush AC, Crosby SD, Warren WC, Williams SA, et al. (2005) Profiling of gender-regulated gene transcripts in the filarial nematode Brugia malayi by cDNA oligonucleotide array analysis. Mol Biochem Parasitol 143: 49–57. doi: 10.1016/j.molbiopara.2005.05.005
[24]
Jiang D, Li BW, Fischer PU, Weil GJ (2008) Localization of gender-regulated gene expression in the filarial nematode Brugia malayi. Int J Parasitol 38: 503–512. doi: 10.1016/j.ijpara.2007.09.010
[25]
Michalski ML, Monsey JD, Cistola DP, Weil GJ (2002) An embryo-associated fatty acid-binding protein in the filarial nematode Brugia malayi. Mol Biochem Parasitol 124: 1–10. doi: 10.1016/S0166-6851(02)00081-6
[26]
Michalski ML, Weil GJ (1999) Gender-specific gene expression in Brugia malayi. Mol Biochem Parasitol 104: 247–257. doi: 10.1016/S0166-6851(99)00149-8
[27]
Boag PR, Newton SE, Gasser RB (2001) Molecular aspects of sexual development and reproduction in nematodes and schistosomes. Adv Parasitol 50: 153–198. doi: 10.1016/s0065-308x(01)50031-7
[28]
Portman DS (2007) Genetic control of sex differences in C. elegans neurobiology and behavior. Adv Genet 59: 1–37. doi: 10.1016/S0065-2660(07)59001-2
[29]
Kohler HR, Kloas W, Schirling M, Lutz I, Reye AL, et al. (2007) Sex steroid receptor evolution and signalling in aquatic invertebrates. Ecotoxicology 16: 131–143. doi: 10.1007/s10646-006-0111-3
[30]
Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, et al. (2006) Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 124: 1209–1223. doi: 10.1016/j.cell.2006.01.037
[31]
Rottiers V, Motola DL, Gerisch B, Cummins CL, Nishiwaki K, et al. (2006) Hormonal control of C. elegans dauer formation and life span by a Rieske-like oxygenase. Dev Cell 10: 473–482. doi: 10.1016/j.devcel.2006.02.008
[32]
Selkirk ME, Yazdanbakhsh M, Freedman D, Blaxter ML, Cookson E, et al. (1991) A proline-rich structural protein of the surface sheath of larval Brugia filarial nematode parasites. J Biol Chem 266: 11002–11008.
[33]
Park JO, Pan J, Mohrlen F, Schupp MO, Johnsen R, et al. (2010) Characterization of the astacin family of metalloproteases in C. elegans. BMC Dev Biol 10: 14. doi: 10.1186/1471-213X-10-14
[34]
de Hollanda JC, Denham DA, Suswillo RR (1982) The infectivity of microfilariae of Brugia pahangi of different ages to Aedes aegypti. J Helminthol 56: 155–157. doi: 10.1017/S0022149X00034386
[35]
Fuhrman JA, Urioste SS, Hamill B, Spielman A, Piessens WF (1987) Functional and antigenic maturation of Brugia malayi microfilariae. Am J Trop Med Hyg 36: 70–74.
[36]
Laurence BR, Simpson MG (1974) The ultrastructure of the microfilaria of Brugia, Nematoda: Filarioidea. Int J Parasitol 4: 523–536. doi: 10.1016/0020-7519(74)90071-X
Araujo AC, Souto-Padron T, de Souza W (1993) Cytochemical localization of carbohydrate residues in microfilariae of Wuchereria bancrofti and Brugia malayi. J Histochem Cytochem 41: 571–578. doi: 10.1177/41.4.8450196
[39]
Araujo A, Souto-Padron T, De Souza W (1994) An ultrastructural, cytochemical and freeze-fracture study of the surface structures of Brugia malayi microfilariae. Int J Parasitol 24: 899–907. doi: 10.1016/0020-7519(94)90016-7
[40]
Yamamoto H, Ogura N, Kobayashi M, Chigusa Y (1983) Studies on filariasis II: exsheathment of the microfilariae of B. pahangi in Armigeres subalbatus. Jap J Parasit 32: 287–292.
[41]
Christensen BM, Sutherland DR (1984) Brugia pahangi: Exsheathment and Midgut Penetration in Aedes aegypti. Transactions of the American Microscopical Society 103: 423–433. doi: 10.2307/3226478
[42]
Wu Y, Preston G, Bianco AE (2008) Chitinase is stored and secreted from the inner body of microfilariae and has a role in exsheathment in the parasitic nematode Brugia malayi. Mol Biochem Parasitol 161: 55–62. doi: 10.1016/j.molbiopara.2008.06.007
[43]
Schrater AF, Rossignol PA, Hamill B, Piessens WF, Spielman A (1982) Brugia malayi microfilariae from the peritoneal cavity of jirds vary in their ability to penetrate the mosquito midgut. Am J Trop Med Hyg 31: 292–296.
[44]
Wu Y, Egerton G, Pappin DJ, Harrison RA, Wilkinson MC, et al. (2004) The Secreted Larval Acidic Proteins (SLAPs) of Onchocerca spp. are encoded by orthologues of the alt gene family of Brugia malayi and have host protective potential. Mol Biochem Parasitol 134: 213–224. doi: 10.1016/j.molbiopara.2003.12.002
[45]
Gregory WF, Atmadja AK, Allen JE, Maizels RM (2000) The abundant larval transcript-1 and -2 genes of Brugia malayi encode stage-specific candidate vaccine antigens for filariasis. Infect Immun 68: 4174–4179. doi: 10.1128/IAI.68.7.4174-4179.2000
Hunter SJ, Martin SA, Thompson FJ, Tetley L, Devaney E (1999) The isolation of differentially expressed cDNA clones from the filarial nematode Brugia pahangi. Parasitology 119(Pt 2): 189–198. doi: 10.1017/S0031182099004576
[48]
MacDonald AJ, Tawe W, Leon O, Cao L, Liu J, et al. (2004) Ov-ASP-1, the Onchocerca volvulus homologue of the activation associated secreted protein family is immunostimulatory and can induce protective anti-larval immunity. Parasite Immunol 26: 53–62. doi: 10.1111/j.0141-9838.2004.00685.x
[49]
Cho-Ngwa F, Liu J, Lustigman S (2010) The Onchocerca volvulus cysteine proteinase inhibitor, Ov-CPI-2, is a target of protective antibody response that increases with age. PLoS Negl Trop Dis 4: e800. doi: 10.1371/journal.pntd.0000800
[50]
Ford L, Guiliano DB, Oksov Y, Debnath AK, Liu J, et al. (2005) Characterization of a novel filarial serine protease inhibitor, Ov-SPI-1, from Onchocerca volvulus, with potential multifunctional roles during development of the parasite. J Biol Chem 280: 40845–40856. doi: 10.1074/jbc.M504434200
[51]
Veerapathran A, Dakshinamoorthy G, Gnanasekar M, Reddy MV, Kalyanasundaram R (2009) Evaluation of Wuchereria bancrofti GST as a vaccine candidate for lymphatic filariasis. PLoS Negl Trop Dis 3: e457. doi: 10.1371/journal.pntd.0000457
[52]
Kumar S, Chaudhary K, Foster JM, Novelli JF, Zhang Y, et al. (2007) Mining predicted essential genes of Brugia malayi for nematode drug targets. PLoS One 2: e1189. doi: 10.1371/journal.pone.0001189
[53]
Li B-W, Rush A, Mitreva M, Yin Y, Spiro D, et al. (2009) Transcriptomes and pathways associated with infectivity, survival and immunogenicity in Brugia malayi L3. BMC Genomics 10: 267. doi: 10.1186/1471-2164-10-267
[54]
Guiliano DB, Hong X, McKerrow JH, Blaxter ML, Oksov Y, et al. (2004) A gene family of cathepsin L-like proteases of filarial nematodes are associated with larval molting and cuticle and eggshell remodeling. Mol Biochem Parasitol 136: 227–242. doi: 10.1016/j.molbiopara.2004.03.015
[55]
Lustigman S, Zhang J, Liu J, Oksov Y, Hashmi S (2004) RNA interference targeting cathepsin L and Z-like cysteine proteases of Onchocerca volvulus confirmed their essential function during L3 molting. Mol Biochem Parasitol 138: 165–170. doi: 10.1016/j.molbiopara.2004.08.003
[56]
Song C, Gallup JM, Day TA, Bartholomay LC, Kimber MJ (2010) Development of an in vivo RNAi protocol to investigate gene function in the filarial nematode, Brugia malayi. PLoS Pathog 6: e1001239. doi: 10.1371/journal.ppat.1001239
[57]
Chirgwin SR, Coleman SU, Klei TR (2008) Brugia pahangi: in vivo tissue migration of early L3 alters gene expression. Exp Parasitol 118: 89–95. doi: 10.1016/j.exppara.2007.06.007
[58]
Bennuru S, Semnani R, Meng Z, Ribeiro JM, Veenstra TD, et al. (2009) Brugia malayi excreted/secreted proteins at the host/parasite interface: stage- and gender-specific proteomic profiling. PLoS Negl Trop Dis 3: e410. doi: 10.1371/journal.pntd.0000410
[59]
Moreno Y, Geary TG (2008) Stage- and gender-specific proteomic analysis of Brugia malayi excretory-secretory products. PLoS Negl Trop Dis 2: e326. doi: 10.1371/journal.pntd.0000326
[60]
Taylor CM, Fischer K, Abubucker S, Wang Z, Martin J, et al. (2011) Targeting protein-protein interactions for parasite control. PLoS One 6: e18381. doi: 10.1371/journal.pone.0018381
[61]
Crowther GJ, Shanmugam D, Carmona SJ, Doyle MA, Hertz-Fowler C, et al. (2010) Identification of attractive drug targets in neglected-disease pathogens using an in silico approach. PLoS Negl Trop Dis 4: e804. doi: 10.1371/journal.pntd.0000804