全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Proteomic Analysis of Human Skin Treated with Larval Schistosome Peptidases Reveals Distinct Invasion Strategies among Species of Blood Flukes

DOI: 10.1371/journal.pntd.0001337

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Skin invasion is the initial step in infection of the human host by schistosome blood flukes. Schistosome larvae have the remarkable ability to overcome the physical and biochemical barriers present in skin in the absence of any mechanical trauma. While a serine peptidase with activity against insoluble elastin appears to be essential for this process in one species of schistosomes, Schistosoma mansoni, it is unknown whether other schistosome species use the same peptidase to facilitate entry into their hosts. Methods Recent genome sequencing projects, together with a number of biochemical studies, identified alternative peptidases that Schistosoma japonicum or Trichobilharzia regenti could use to facilitate migration through skin. In this study, we used comparative proteomic analysis of human skin treated with purified cercarial elastase, the known invasive peptidase of S. mansoni, or S. mansoni cathespin B2, a close homolog of the putative invasive peptidase of S. japonicum, to identify substrates of either peptidase. Select skin proteins were then confirmed as substrates by in vitro digestion assays. Conclusions This study demonstrates that an S. mansoni ortholog of the candidate invasive peptidase of S. japonicum and T. regenti, cathepsin B2, is capable of efficiently cleaving many of the same host skin substrates as the invasive serine peptidase of S. mansoni, cercarial elastase. At the same time, identification of unique substrates and the broader species specificity of cathepsin B2 suggest that the cercarial elastase gene family amplified as an adaptation of schistosomes to human hosts.

References

[1]  Elias PM (1996) Stratum corneum architecture, metabolic activity and interactivity with subjacent cell layers. Exp Dermatol 5: 191–201. doi: 10.1111/j.1600-0625.1996.tb00117.x
[2]  Fukuyama K, Tzeng S, McKerrow J, Epstein WL (1983) The epidermal barrier to Schistosoma mansoni infection. Curr Probl Dermatol 11: 185–193.
[3]  Stirewalt MA, Dorsey CH (1974) Schistosoma mansoni: cercarial penetration of host epidermis at the ultrastructural level. Exp Parasitol 35: 1–15. doi: 10.1016/0014-4894(74)90002-2
[4]  Mair GR, Maule AG, Fried B, Day TA, Halton DW (2003) Organization of the musculature of schistosome cercariae. J Parasitol 89: 623–625. doi: 10.1645/0022-3395(2003)089[0623:OOTMOS]2.0.CO;2
[5]  Haas W, Grabe K, Geis C, Pach T, Stoll K, et al. (2002) Recognition and invasion of human skin by Schistosoma mansoni cercariae: the key-role of L-arginine. Parasitology 124: 153–167. doi: 10.1017/S0031182001001032
[6]  Knudsen GM, Medzihradszky KF, Lim KC, Hansell E, McKerrow JH (2005) Proteomic analysis of Schistosoma mansoni cercarial secretions. Mol Cell Proteomics 4: 1862–1875. doi: 10.1074/mcp.M500097-MCP200
[7]  Curwen RS, Ashton PD, Johnston DA, Wilson RA (2004) The Schistosoma mansoni soluble proteome: a comparison across four life-cycle stages. Mol Biochem Parasitol 138: 57–66. doi: 10.1016/j.molbiopara.2004.06.016
[8]  McKerrow JH, Keene WE, Jeong KH, Werb Z (1983) Degradation of extracellular matrix by larvae of Schistosoma mansoni. I. Degradation by cercariae as a model for initial parasite invasion of host. Lab Invest 49: 195–200.
[9]  McKerrow JH, Pino-Heiss S, Lindquist R, Werb Z (1985) Purification and characterization of an elastinolytic proteinase secreted by cercariae of Schistosoma mansoni. J Biol Chem 260: 3703–3707.
[10]  Salter JP, Lim KC, Hansell E, Hsieh I, McKerrow JH (2000) Schistosome invasion of human skin and degradation of dermal elastin are mediated by a single serine protease. J Biol Chem 275: 38667–38673. doi: 10.1074/jbc.M006997200
[11]  Lim KC, Sun E, Bahgat M, Bucks D, Guy R, et al. (1999) Blockage of skin invasion by schistosome cercariae by serine protease inhibitors. Am J Trop Med Hyg 60: 487–492.
[12]  Dvorak J, Mashiyama ST, Braschi S, Sajid M, Knudsen GM, et al. (2008) Differential use of protease families for invasion by schistosome cercariae. Biochimie 90: 345–358. doi: 10.1016/j.biochi.2007.08.013
[13]  Doleckova K, Kasny M, Mikes L, Cartwright J, Jedelsky P, et al. (2009) The functional expression and characterisation of a cysteine peptidase from the invasive stage of the neuropathogenic schistosome Trichobilharzia regenti. Int J Parasitol 39: 201–211. doi: 10.1016/j.ijpara.2008.06.010
[14]  Stefanic S, Dvorak J, Horn M, Braschi S, Sojka D, et al. (2010) RNA interference in Schistosoma mansoni schistosomula: selectivity, sensitivity and operation for larger-scale screening. PLoS Negl Trop Dis 4: e850. doi: 10.1371/journal.pntd.0000850
[15]  Salter JP, Choe Y, Albrecht H, Franklin C, Lim KC, et al. (2002) Cercarial elastase is encoded by a functionally conserved gene family across multiple species of schistosomes. J Biol Chem 277: 24618–24624. doi: 10.1074/jbc.M202364200
[16]  Mortz E, Krogh TN, Vorum H, Gorg A (2001) Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1: 1359–1363. doi: 10.1002/1615-9861(200111)1:11<1359::AID-PROT1359>3.0.CO;2-Q
[17]  Caffrey CR, Salter JP, Lucas KD, Khiem D, Hsieh I, et al. (2002) SmCB2, a novel tegumental cathepsin B from adult Schistosoma mansoni. Mol Biochem Parasitol 121: 49–61. doi: 10.1016/S0166-6851(02)00022-1
[18]  Chalkley RJ, Baker PR, Hansen KC, Medzihradszky KF, Allen NP, et al. (2005) Comprehensive analysis of a multidimensional liquid chromatography mass spectrometry dataset acquired on a quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometer - I. How much of the data is theoretically interpretable by search engines? Molecular & Cellular Proteomics 4: 1189–1193. doi: 10.1074/mcp.D500001-MCP200
[19]  Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature Methods 4: 207–214. doi: 10.1038/nmeth1019
[20]  Consortium (2009) The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460: 345–351. doi: 10.1038/nature08140
[21]  Hansell E, Braschi S, Medzihradszky KF, Sajid M, Debnath M, et al. (2008) Proteomic analysis of skin invasion by blood fluke larvae. PLoS Negl Trop Dis 2: e262. doi: 10.1371/journal.pntd.0000262
[22]  Curwen RS, Ashton PD, Sundaralingam S, Wilson RA (2006) Identification of novel proteases and immunomodulators in the secretions of schistosome cercariae that facilitate host entry. Mol Cell Proteomics 5: 835–844. doi: 10.1074/mcp.M500313-MCP200
[23]  Lunstrum GP, Morris NP, McDonough AM, Keene DR, Burgeson RE (1991) Identification and partial characterization of two type XII-like collagen molecules. J Cell Biol 113: 963–969. doi: 10.1083/jcb.113.4.963
[24]  Cohen FE, Gregoret LM, Amiri P, Aldape K, Railey J, et al. (1991) Arresting tissue invasion of a parasite by protease inhibitors chosen with the aid of computer modeling. Biochemistry 30: 11221–11229. doi: 10.1021/bi00111a005
[25]  Choe Y, Leonetti F, Greenbaum DC, Lecaille F, Bogyo M, et al. (2006) Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem 281: 12824–12832. doi: 10.1074/jbc.M513331200
[26]  Castro-Borges W, Dowle A, Curwen RS, Thomas-Oates J, Wilson RA (2011) Enzymatic shaving of the tegument surface of live schistosomes for proteomic analysis: a rational approach to select vaccine candidates. PLoS Negl Trop Dis 5: e993. doi: 10.1371/journal.pntd.0000993
[27]  Aslam A, Quinn P, McIntosh RS, Shi J, Ghumra A, et al. (2008) Proteases from Schistosoma mansoni cercariae cleave IgE at solvent exposed interdomain regions. Mol Immunol 45: 567–574. doi: 10.1016/j.molimm.2007.05.021
[28]  Sloane BF, Honn KV (1984) Cysteine proteinases and metastasis. Cancer Metastasis Rev 3: 249–263. doi: 10.1007/BF00048388
[29]  Fishelson Z, Amiri P, Friend DS, Marikovsky M, Petitt M, et al. (1992) Schistosoma mansoni: cell-specific expression and secretion of a serine protease during development of cercariae. Exp Parasitol 75: 87–98. doi: 10.1016/0014-4894(92)90124-S
[30]  McKerrow JH, Salter J (2002) Invasion of skin by Schistosoma cercariae. Trends Parasitol 18: 193–195. doi: 10.1016/S1471-4922(02)02309-7
[31]  Cavallo-Medved D, Rudy D, Blum G, Bogyo M, Caglic D, et al. (2009) Live-cell imaging demonstrates extracellular matrix degradation in association with active cathepsin B in caveolae of endothelial cells during tube formation. Exp Cell Res 315: 1234–1246. doi: 10.1016/j.yexcr.2009.01.021
[32]  Werle B, Ebert W, Klein W, Spiess E (1994) Cathepsin B in tumors, normal tissue and isolated cells from the human lung. Anticancer Res 14: 1169–1176.
[33]  Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, et al. (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460: 352–358. doi: 10.1038/nature08160
[34]  He YX, Salafsky B, Ramaswamy K (2005) Comparison of skin invasion among three major species of Schistosoma. Trends Parasitol 21: 201–203. doi: 10.1016/j.pt.2005.03.003
[35]  Jenkins SJ, Hewitson JP, Jenkins GR, Mountford AP (2005) Modulation of the host's immune response by schistosome larvae. Parasite Immunol 27: 385–393. doi: 10.1111/j.1365-3024.2005.00789.x
[36]  Kikuchi Y, Takai T, Kuhara T, Ota M, Kato T, et al. (2006) Crucial commitment of proteolytic activity of a purified recombinant major house dust mite allergen Der p1 to sensitization toward IgE and IgG responses. J Immunol 177: 1609–1617.
[37]  Ruppel A, McLaren DJ, Diesfeld HJ, Rother U (1984) Schistosoma mansoni: escape from complement-mediated parasiticidal mechanisms following percutaneous primary infection. Eur J Immunol 14: 702–708. doi: 10.1002/eji.1830140806

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133