全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Preexisting Japanese Encephalitis Virus Neutralizing Antibodies and Increased Symptomatic Dengue Illness in a School-Based Cohort in Thailand

DOI: 10.1371/journal.pntd.0001311

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Dengue viruses (DENVs) and Japanese encephalitis virus (JEV) have significant cross-reactivity in serological assays; the clinical implications of this remain undefined. An improved understanding of whether and how JEV immunity modulates the clinical outcome of DENV infection is important as large-scale DENV vaccine trials will commence in areas where JEV is co-endemic and/or JEV immunization is routine. Methods and Findings The association between preexisting JEV neutralizing antibodies (NAbs) and the clinical severity of DENV infection was evaluated in a prospective school-based cohort in Thailand that captured asymptomatic, non-hospitalized, and hospitalized DENV infections. Covariates considered included age, baseline DENV antibody status, school of attendance, epidemic year, and infecting DENV serotype. 942 children experienced at least one DENV infection between 1998 and 2002, out of 3,687 children who were enrolled for at least one full year. In crude analysis, the presence of JEV NAbs was associated with an increased occurrence of symptomatic versus asymptomatic infection (odds ratio [OR] = 1.55, 95% CI: 1.08–2.23) but not hospitalized illness or dengue hemorrhagic fever (DHF). The association was strongest in children with negative DENV serology (DENV-naive) (OR = 2.75, 95% CI: 1.12–6.72), for whom the presence of JEV NAbs was also associated with a symptomatic illness of longer duration (5.4 days for JEV NAb+ versus 2.6 days for JEV NAb-, p = 0.048). JEV NAbs were associated with increased DHF in younger children with multitypic DENV NAb profiles (OR = 4.05, 95% CI: 1.18 to 13.87). Among those with JEV NAbs, the association with symptomatic illness did not vary by antibody titer. Interpretation The prior existence of JEV NAbs was associated with an increased probability of symptomatic as compared to asymptomatic DENV illness. These findings are in contrast to previous studies suggesting an attenuating effect of heterologous flavivirus immunity on DENV disease severity.

References

[1]  Grossman RA, Gould D, Smith TJ, Johnsen DO, Pantuwatana S (1973) Study of Japanese encephalitis virus in Chiangmai valley, Thailand. I. Introduction and study design. Am J Epidemiol 98: 111–120.
[2]  Endy TP, Nisalak A (2002) Japanese encephalitis virus: ecology and epidemiology. Curr Top Microbiol Immunol 267: 11–48.
[3]  Chunsuttiwat S (1998) Issues related to integration of JE vaccine into national EPI: experience from Thailand. Department of Communicable Disease Control, Ministry of Public Health, Thailand.
[4]  Martin DA, Biggerstaff BJ, Allen B, Johnson AJ, Lanciotti RS, et al. (2002) Use of immunoglobulin m cross-reactions in differential diagnosis of human flaviviral encephalitis infections in the United States. Clin Diagn Lab Immunol 9: 544–549. doi: 10.1128/cdli.9.3.544-549.2002
[5]  Makino Y, Tadano M, Saito M, Maneekarn N, Sittisombut N, et al. (1994) Studies on serological cross-reaction in sequential flavivirus infections. Microbiol Immunol 38: 951–955.
[6]  Sabin AB (1952) Research on dengue during World War II. Am J Trop Med Hyg 1: 30–50.
[7]  Halstead SB, Chow J, Marchette NJ (1973) Immunologic enhancement of dengue virus replication. Nature New Biology 243: 24–26.
[8]  Hoke CH Jr, Nisalak A, Sangawhipa N, Jatanasen S, Laorakpongse T, et al. (1988) Protection against Japanese encephalitis by inactivated vaccines. N Engl J Med 319: 608–614. doi: 10.1056/NEJM198809083191004
[9]  Gibbons RV, Kalanarooj S, Jarman RG, Nisalak A, Vaughn DW, et al. (2007) Analysis of Repeat Hospital Admissions for Dengue to Estimate the Frequency of Third or Fourth Dengue Infections Resulting in Admissions and Dengue Hemorrhagic Fever, and Serotype Sequences. Am J Trop Med Hyg 77: 910–913.
[10]  Kanesa-thasan N, Hernandez L, Lyons A, Putnak R, Sun W, et al. A phase I study of the WRAIR tetravalent live attenuated dengue vaccine in flavivirus-immune adult volunteers.; 2002 6-8 May 2002; Baltimore MD.
[11]  Bhamarapravati N, Yoksan S, Chayaniyayothin T, Angsubphakorn S, Bunyaratvej A (1986) Dengue virus vaccine development 2. Clinical, immunological and biological response in flavivirus immune and non-immune human volunteers inoculated with dengue 2 (16681) passaged 53 times in primary dog kidney cells. In: St.George TD, Kay H, Blok J, editors. Brisbane, Australia: CSIRO Tropical Animal Science. pp. 51–55. 1986 6-9 May.
[12]  Eckels KH, Kliks SC, Dubois DR, Wahl LM, Bancroft WH (1985) The association of enhancing antibodies with seroconversion in humans receiving a dengue-2 live-virus vaccine. J Immunol 135: 4201–4203.
[13]  Kanesa-Thasan N, Sun W, Ludwig GV, Rossi C, Putnak JR, et al. (2003) Atypical antibody responses in dengue vaccine recipients. Am J Trop Med Hyg 69: 32–38.
[14]  Scott RM, Eckels KH, Bancroft WH, Summers PL, McCown JM, et al. (1983) Dengue 2 vaccine: dose response in volunteers in relation to yellow fever immune status. J Infect Dis 148: 1055–1060. doi: 10.1093/infdis/148.6.1055
[15]  Burke DS, Lorsomrudee W, Leake CJ, Hoke CH Jr, Nisalak A, et al. (1985) Fatal outcome in Japanese encephalitis. Am J Trop Med Hyg 34: 1203–1210.
[16]  Hammon WM, Tigertt WD, Sather GE, Berge TO, Meiklejohn G (1958) Epidemiologic studies of concurrent “VERGIN “ epidemics of Japanese B encephalitis and of mumps on Guam,1947-1948, with subsequent observations including dengue, through 1957. Am J Trop Med Hyg 7: 411–467.
[17]  Hammon WM (1969) Observations on dengue fever, benign protector and killer: a Dr Jekyll and Mr Hyde. Am J Trop Med Hyg 18: 159–165.
[18]  Price WH, Thind IS (1972) The mechanism of cross-protection afforded by dengue virus against West Nile virus in hamsters. J Hyg Camb 70: 611–617. doi: 10.1017/S0022172400022476
[19]  Halstead SB, O'Rourke EJ (1977) Antibody-enhanced dengue virus infection in primate leukocytes. Nature 265: 739–741. doi: 10.1038/265739a0
[20]  Halstead SB, Porterfield JS, O'Rourke EJ (1980) Enhancement of dengue virus infection in monocytes by flavivirus antisera. Am J Trop Med Hyg 29: 638–642.
[21]  Putvatana R, Yoksan S, Chayayodhin T, Bhamarapravati N, Halstead SB (1984) Absence of dengue 2 infection enhancement in human sera containing Japanese encephalitis antibodies. Am J Trop Med Hyg 33: 288–294.
[22]  Tarr GC, Hammon WM (1974) Cross-protection between group B arboviruses: Resistance in mice ot Japanese B encephalitis and St. Louis encephalitis viruses induce by dengue virus immunization. Infect Immun 9: 909–915.
[23]  Imam IZ, Hammon WM (1957) Challenge of hamsters with Japanese B, St. Louis and Murray Valley encephalitis viruses after immunization by West Nile infection plus specific vaccine. J Immunol 79: 243–252.
[24]  Goverdhan MK, Kulkarni AB, Gupta AK, Tupe CD, Rodrigues JJ (1992) Two-way cross-protection between West Nile and Japanese encephalitis viruses in bonnet macaques. Acta Virol (Praha) 36: 277–283.
[25]  Nemeth N, Bosco-Lauth A, Bowen R (2009) Cross-protection between West Nile and Japanese encephalitis viruses in red-winged blackbirds (Agelaius phoeniceus). Avian Dis 53: 421–425. doi: 10.1637/8574-010109-Reg.1
[26]  Martina B, Koraka P, van den Doel P, van Amerongen G, Rimmelzwaan G, et al. (2008) Immunization with West Nile virus envelope domain III protects mice against lethal infection with homologous and heterologous virus. Vaccine 26: 153–157. doi: 10.1016/j.vaccine.2007.10.055
[27]  Endy TP, Chunsuttiwat S, Nisalak A, Libraty DH, Green S, et al. (2002) Epidemiology of inapparent and symptomatic acute dengue virus infection: a prospective study of primary school children in Kamphaeng Phet, Thailand. Am J Epidemiol 156: 40–51. doi: 10.1093/aje/kwf005
[28]  Endy TP, Nisalak A, Chunsuttiwat S, Libraty DH, Green S, et al. (2002) Spatial and temporal circulation of dengue virus serotypes: a prospective study of primary school children in Kamphaeng Phet, Thailand. Am J Epidemiol 156: 52–59. doi: 10.1093/aje/kwf006
[29]  Nimmannitya S (1997) Dengue Hemorrhagic Fever: Diagnosis and Management. In: Gubler DJ, Kuno G, editors. Dengue and dengue hemorrhagic fever. Cambridge: CAB International. pp. 133–145.
[30]  Clarke DH, Casals J (1958) Techniques for hemagglutination and hemagglutination inhibition with arthropod-borne viruses. Am J Trop Med Hyg 7: 561–573.
[31]  Russell PK, Nisalak A, Sukhavachana P, Vivona S (1967) A plaque reduction test for dengue virus neutralization antibodies. J Immunol 99: 285–290.
[32]  Yoksan S, Bhamarapravati N, Halstead SB (1986) Dengue virus vaccine development: Study on biological markers of uncloned dengue 1-4 viruses serially passaged in primary kidney cells. Unknown. pp. 35–38.
[33]  Jarman RG, Holmes EC, Rodpradit P, Klungthong C, Gibbons RV, et al. (2008) Microevolution of Dengue viruses circulating among primary school children in Kamphaeng Phet, Thailand. J Virol 82: 5494–5500. doi: 10.1128/JVI.02728-07
[34]  Mammen MP, Pimgate C, Koenraadt CJ, Rothman AL, Aldstadt J, et al. (2008) Spatial and temporal clustering of dengue virus transmission in Thai villages. PLoS Med 5: e205. doi: 10.1371/journal.pmed.0050205
[35]  Nimmannitya S, Hutamai S, Kalayanarooj S, Rojanasuphot S (1995) A field study on Nakayama and Beijing strains of Japanese encephalitis vaccines. Southeast Asian J Trop Med Public Health 26: 689–693.
[36]  Halstead SB, Nimmannitya S, Cohen SN (1970) Observations related to pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered. Yale J Biol Med 42: 311–328.
[37]  Sangkawibha N, Rojanasuphot S, Ahandrik S, Viriyapongse S, Jatanasen S, et al. (1984) Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am J Epidemiol 120: 653–669.
[38]  Rodrigues FM, Mohan Rao CV, Mandke VB, Pinto BD, Pavri K (1986) Neutralizing antibody response to Japanese encephalitis inactivated mouse brain vaccine among laboratory personnel. Trans R Soc Trop Med Hyg 80: 301–304. doi: 10.1016/0035-9203(86)90041-6
[39]  Shu PY, Chen LK, Chang SF, Yueh YY, Chow L, et al. (2001) Antibody to the nonstructural protein NS1 of Japanese encephalitis virus: potential application of mAb-based indirect ELISA to differentiate infection from vaccination. Vaccine 19: 1753–1763. doi: 10.1016/S0264-410X(00)00391-1
[40]  Rauh L, Schmidt R (1965) Measles immunization with killed virus vaccine. Serum antibody titers and experience with exposure to measles epidemic. American Journal of Diseases of Children 109: 232–237. doi: 10.1001/archpedi.1965.02090020234007
[41]  Kim HW, Arrobio JO, Brandt CD, Jeffries BC, Pyles G, et al. (1973) Epidemiology of respiratory syncytial virus infection in Washington, D.C. I. Importance of the virus in different respiratory tract disease syndromes and temporal distribution of infection. Am J Epidemiol 98: 216–225.
[42]  Lobigs M, Larena M, Alsharifi M, Lee E, Pavy M (2009) Live chimeric and inactivated Japanese encephalitis virus vaccines differ in their cross-protective values against Murray Valley encephalitis virus. Journal of Virology 83: 2436–2445. doi: 10.1128/JVI.02273-08

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133