Background The exacting nutritional requirements and complicated life cycles of parasites mean that they are not always amenable to high-throughput drug screening using automated procedures. Therefore, we have engineered the yeast Saccharomyces cerevisiae to act as a surrogate for expressing anti-parasitic targets from a range of biomedically important pathogens, to facilitate the rapid identification of new therapeutic agents. Methodology/Principal Findings Using pyrimethamine/dihydrofolate reductase (DHFR) as a model parasite drug/drug target system, we explore the potential of engineered yeast strains (expressing DHFR enzymes from Plasmodium falciparum, P. vivax, Homo sapiens, Schistosoma mansoni, Leishmania major, Trypanosoma brucei and T. cruzi) to exhibit appropriate differential sensitivity to pyrimethamine. Here, we demonstrate that yeast strains (lacking the major drug efflux pump, Pdr5p) expressing yeast (ScDFR1), human (HsDHFR), Schistosoma (SmDHFR), and Trypanosoma (TbDHFR and TcDHFR) DHFRs are insensitive to pyrimethamine treatment, whereas yeast strains producing Plasmodium (PfDHFR and PvDHFR) DHFRs are hypersensitive. Reassuringly, yeast strains expressing field-verified, drug-resistant mutants of P. falciparum DHFR (Pfdhfr51I,59R,108N) are completely insensitive to pyrimethamine, further validating our approach to drug screening. We further show the versatility of the approach by replacing yeast essential genes with other potential drug targets, namely phosphoglycerate kinases (PGKs) and N-myristoyl transferases (NMTs). Conclusions/Significance We have generated a number of yeast strains that can be successfully harnessed for the rapid and selective identification of urgently needed anti-parasitic agents.
References
[1]
Sibley CH, Ringwald P (2006) A database of antimalarial drug resistance. Malar J 5: 48. doi: 10.1186/1475-2875-5-48
[2]
Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J (2006) Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 6: 411–425. doi: 10.1016/S1473-3099(06)70521-7
[3]
van der Werf MJ, de Vlas SJ, Brooker S, Looman CW, Nagelkerke NJ, et al. (2003) Quantification of clinical morbidity associated with schistosome infection in sub-Saharan Africa. Acta Trop 86: 125–139. doi: 10.1016/S0001-706X(03)00029-9
[4]
Sayed AA, Simeonov A, Thomas CJ, Inglese J, Austin CP, et al. (2008) Identification of oxadiazoles as new drug leads for the control of schistosomiasis. Nat Med 14: 407–412. doi: 10.1038/nm1737
[5]
Frearson JA, Brand S, McElroy SP, Cleghorn LA, Smid O, et al. (2010) N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature 464: 728–732. doi: 10.1038/nature08893
[6]
Mina JG, Pan SY, Wansadhipathi NK, Bruce CR, Shams-Eldin H, et al. (2009) The Trypanosoma brucei sphingolipid synthase, an essential enzyme and drug target. Mol Biochem Parasitol 168: 16–23. doi: 10.1016/j.molbiopara.2009.06.002
[7]
El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, et al. (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309: 409–415. doi: 10.1126/science.1112631
[8]
Naula C, Parsons M, Mottram JC (2005) Protein kinases as drug targets in trypanosomes and Leishmania. Biochim Biophys Acta 1754: 151–159. doi: 10.1016/j.bbapap.2005.08.018
[9]
Laxman S, Beavo JA (2007) Cyclic nucleotide signaling mechanisms in trypanosomes: possible targets for therapeutic agents. Mol Interv 7: 203–215. doi: 10.1124/mi.7.4.7
[10]
Maguire JH (2006) Chagas' disease--can we stop the deaths? N Engl J Med 355: 760–761. doi: 10.1056/NEJMp068130
[11]
Zhang N, Bilsland E (2011) Contributions of Saccharomyces cerevisiae to Understanding Mammalian Gene Function and Therapy. In: Castrillo JI, Oliver SG, editors. Yeast Systems Biology. NY: Humana Press. pp. 501–523.
[12]
Ericson E, Gebbia M, Heisler LE, Wildenhain J, Tyers M, et al. (2008) Off-target effects of psychoactive drugs revealed by genome-wide assays in yeast. PLoS Genet 4: e1000151. doi: 10.1371/journal.pgen.1000151
[13]
Giaever G, Chu AM, Ni L, Connelly C, Riles L, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387–391. doi: 10.1038/nature00935
[14]
Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, et al. (2008) The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320: 362–365. doi: 10.1126/science.1150021
[15]
Ho CH, Magtanong L, Barker SL, Gresham D, Nishimura S, et al. (2009) A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. Nat Biotechnol 27: 369–377. doi: 10.1038/nbt.1534
[16]
Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, et al. (2009) Predicting new molecular targets for known drugs. Nature 462: 175–181. doi: 10.1038/nature08506
[17]
Parsons AB, Lopez A, Givoni IE, Williams DE, Gray CA, et al. (2006) Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126: 611–625. doi: 10.1016/j.cell.2006.06.040
[18]
Khozoie C, Pleass RJ, Avery SV (2009) The antimalarial drug quinine disrupts Tat2p-mediated tryptophan transport and causes tryptophan starvation. J Biol Chem 284: 17968–17974. doi: 10.1074/jbc.M109.005843
[19]
McCue PP, Phang JM (2008) Identification of human intracellular targets of the medicinal Herb St. John's Wort by chemical-genetic profiling in yeast. J Agric Food Chem 56: 11011–11017. doi: 10.1021/jf801593a
[20]
Li W, Mo W, Shen D, Sun L, Wang J, et al. (2005) Yeast model uncovers dual roles of mitochondria in action of artemisinin. PLoS Genet 1: e36. doi: 10.1371/journal.pgen.0010036
[21]
Aruna K, Chakraborty T, Rao PN, Santos C, Ballesta JP, et al. (2005) Functional complementation of yeast ribosomal P0 protein with Plasmodium falciparum P0. Gene 357: 9–17. doi: 10.1016/j.gene.2005.04.007
[22]
Sibley CH, Brophy VH, Cheesman S, Hamilton KL, Hankins EG, et al. (1997) Yeast as a model system to study drugs effective against apicomplexan proteins. Methods 13: 190–207. doi: 10.1006/meth.1997.0511
[23]
Aguiar PH, Santos DN, Lobo FP, Santos TM, Macedo AM, et al. (2006) Functional complementation of a yeast knockout strain by Schistosoma mansoni Rho1 GTPase in the presence of caffeine, an agent that affects mutants defective in the protein kinase C signal transduction pathway. Mem Inst Oswaldo Cruz 101(Suppl 1): 323–326. doi: 10.1590/S0074-02762006000900051
[24]
Santos DN, Aguiar PH, Lobo FP, Mourao MM, Tambor JH, et al. (2007) Schistosoma mansoni: Heterologous complementation of a yeast null mutant by SmRbx, a protein similar to a RING box protein involved in ubiquitination. Exp Parasitol 116: 440–449. doi: 10.1016/j.exppara.2007.02.012
[25]
Santos TM, Machado CR, Franco GR, Pena SD (2002) Characterization and comparative functional analysis in yeast of a Schistosoma mansoni Rho1 GTPase gene. Mol Biochem Parasitol 125: 103–112. doi: 10.1016/S0166-6851(02)00218-9
[26]
Gurvitz A (2009) Identification of the Leishmania major proteins LmjF07.0430, LmjF07.0440, and LmjF27.2440 as components of fatty acid synthase II. J Biomed Biotechnol 2009: 950864. doi: 10.1155/2009/950864
[27]
Balliano G, Dehmlow H, Oliaro-Bosso S, Scaldaferri M, Taramino S, et al. (2009) Oxidosqualene cyclase from Saccharomyces cerevisiae, Trypanosoma cruzi, Pneumocystis carinii and Arabidopsis thaliana expressed in yeast: a model for the development of novel antiparasitic agents. Bioorg Med Chem Lett 19: 718–723. doi: 10.1016/j.bmcl.2008.12.040
[28]
Carrillo C, Canepa GE, Giacometti A, Bouvier LA, Miranda MR, et al. (2010) Trypanosoma cruzi amino acid transporter TcAAAP411 mediates arginine uptake in yeasts. FEMS Microbiol Lett. doi: 10.1111/j.1574-6968.2010.01936.x
[29]
Drake R, Serrano A, Perez-Castineira JRN-terminal chimaeras with signal sequences enhance the functional expression and alter the subcellular localization of heterologous membrane-bound inorganic pyrophosphatases in yeast. Biochem J 426: 147–157. doi: 10.1042/BJ20091491
[30]
Erben ED, Daum S, Tellez-Inon MT (2007) The Trypanosoma cruzi PIN1 gene encodes a parvulin peptidyl-prolyl cis/trans isomerase able to replace the essential ESS1 in Saccharomyces cerevisiae. Mol Biochem Parasitol 153: 186–193. doi: 10.1016/j.molbiopara.2007.03.004
[31]
Mokry DZ, Manandhar SP, Chicola KA, Santangelo GM, Schmidt WK (2009) Heterologous expression studies of Saccharomyces cerevisiae reveal two distinct trypanosomatid CaaX protease activities and identify their potential targets. Eukaryot Cell 8: 1891–1900. doi: 10.1128/EC.00169-09
[32]
Geary TG, Conder GA, Bishop B (2004) The changing landscape of antiparasitic drug discovery for veterinary medicine. Trends Parasitol 20: 449–455. doi: 10.1016/j.pt.2004.08.003
[33]
Klein RD, Geary TG (1997) Recombinant Microorganisms as Tools for High Throughput Screening for Nonantibiotic Compounds. Journal of Biomolecular Screening 2: 41–49. doi: 10.1177/108705719700200108
[34]
Marjanovic J, Chalupska D, Patenode C, Coster A, Arnold E, et al. Recombinant yeast screen for new inhibitors of human acetyl-CoA carboxylase 2 identifies potential drugs to treat obesity. 107: 9093-9098. Proc Natl Acad Sci U S A 107: 9093–9098. doi: 10.1073/pnas.1003721107
[35]
Barberis A, Gunde T, Berset C, Audetat S, Luthi U (2005) Yeast as a screening tool. Drug Discovery Today 2: 187–192. doi: 10.1016/j.ddtec.2005.05.022
[36]
Klein RD, Winterrowd CA, Hatzenbuhler NT, Shea MH, Favreau MA, et al. (1992) Cloning of a cDNA encoding phosphoenolpyruvate carboxykinase from Haemonchus contortus. Mol Biochem Parasitol 50: 285–294. doi: 10.1016/0166-6851(92)90226-A
[37]
Klein RD, Olson ER, Favreau MA, Winterrowd CA, Hatzenbuhler NT, et al. (1991) Cloning of a cDNA encoding phosphofructokinase from Haemonchus contortus. Mol Biochem Parasitol 48: 17–26. doi: 10.1016/0166-6851(91)90160-8
[38]
Klein RD, Favreau MA, Alexander-Bowman SJ, Nulf SC, Vanover L, et al. (1997) Haemonchus contortus: cloning and functional expression of a cDNA encoding ornithine decarboxylase and development of a screen for inhibitors. Exp Parasitol 87: 171–184. doi: 10.1006/expr.1997.4213
[39]
Bertino JR (2009) Cancer research: from folate antagonism to molecular targets. Best Pract Res Clin Haematol 22: 577–582. doi: 10.1016/j.beha.2009.09.004
[40]
Certain LK, Sibley CH (2007) Plasmodium falciparum: a novel method for analyzing haplotypes in mixed infections. Exp Parasitol 115: 233–241. doi: 10.1016/j.exppara.2006.09.003
[41]
Rungsihirunrat K, Na-Bangchang K, Hawkins VN, Mungthin M, Sibley CH (2007) Sensitivity to antifolates and genetic analysis of Plasmodium vivax isolates from Thailand. Am J Trop Med Hyg 76: 1057–1065.
[42]
Murabito E, Smallbone K, Swinton J, Westerhoff HV, Steuer R (2010) A probabilistic approach to identify putative drug targets in biochemical networks. J R Soc Interface 8: 880–895. doi: 10.1098/rsif.2010.0540
[43]
Michels PA, Bringaud F, Herman M, Hannaert V (2006) Metabolic functions of glycosomes in trypanosomatids. Biochim Biophys Acta 1763: 1463–1477. doi: 10.1016/j.bbamcr.2006.08.019
[44]
Crowther GJ, Napuli AJ, Gilligan JH, Gagaring K, Borboa R, et al. (2011) Identification of inhibitors for putative malaria drug targets among novel antimalarial compounds. Mol Biochem Parasitol 175: 21–29. doi: 10.1016/j.molbiopara.2010.08.005
[45]
Lexchin J (2010) One step forward, one step sideways? Expanding research capacity for neglected diseases. BMC Int Health Hum Rights 10: 20. doi: 10.1186/1472-698X-10-20
[46]
Zucca M, Savoia D (2011) Current developments in the therapy of protozoan infections. Open Med Chem J 5: 4–10. doi: 10.2174/1874104501105010004
[47]
Pink R, Hudson A, Mouries MA, Bendig M (2005) Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov 4: 727–740. doi: 10.1038/nrd1824
[48]
Don R, Chatelain E Selzer PM, editor. (2009) Drug Discovery for Neglected Diseases: View of a Public-Private Partnership. Antiparasitic and Antibacterial Drug Discovery: From Molecular Targets to Drug Candidates: WILEY-VCH Verlag GmbH & Co. KGaA 33–43.
[49]
Lefevre G, Marrast AC, Grueninger H (2011) Novartis Malaria Initiative: best practice example of pharmaceutical industry's engagement in the fight against malaria. Ann N Y Acad Sci 1222: 19–29. doi: 10.1111/j.1749-6632.2011.05973.x
[50]
Ekins S, Williams AJ (2010) When pharmaceutical companies publish large datasets: an abundance of riches or fool's gold? Drug Discov Today 15: 812–815. doi: 10.1016/j.drudis.2010.08.010
[51]
Peak E, Chalmers IW, Hoffmann KF (2010) Development and validation of a quantitative, high-throughput, fluorescent-based bioassay to detect schistosoma viability. PLoS Negl Trop Dis 4: e759. doi: 10.1371/journal.pntd.0000759
[52]
Smout MJ, Kotze AC, McCarthy JS, Loukas A (2010) A novel high throughput assay for anthelmintic drug screening and resistance diagnosis by real-time monitoring of parasite motility. PLoS Negl Trop Dis 4: e885. doi: 10.1371/journal.pntd.0000885
[53]
Pillai AD, Pain M, Solomon T, Bokhari AA, Desai SA (2010) A cell-based high-throughput screen validates the plasmodial surface anion channel as an antimalarial target. Mol Pharmacol 77: 724–733. doi: 10.1124/mol.109.062711
[54]
Gupta S (2011) Visceral leishmaniasis: experimental models for drug discovery. Indian J Med Res 133: 27–39.
[55]
Gari E, Piedrafita L, Aldea M, Herrero E (1997) A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 13: 837–848. doi: 10.1002/(SICI)1097-0061(199707)13:9<837::AID-YEA145>3.0.CO;2-T
[56]
Wach A, Brachat A, Alberti-Segui C, Rebischung C, Philippsen P (1997) Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13: 1065–1075. doi: 10.1002/(SICI)1097-0061(19970915)13:11<1065::AID-YEA159>3.0.CO;2-K
[57]
Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, et al. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115–132. doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
[58]
Sibley CH, Hyde JE, Sims PF, Plowe CV, Kublin JG, et al. (2001) Pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: what next? Trends Parasitol 17: 582–588. doi: 10.1016/S1471-4922(01)02085-2
[59]
Zhang M, Hanna M, Li J, Butcher S, Dai H, et al. (2010) Creation of a hyperpermeable yeast strain to genotoxic agents through combined inactivation of PDR and CWP genes. Toxicol Sci 113: 401–411. doi: 10.1093/toxsci/kfp267
[60]
King RD, Rowland J, Oliver SG, Young M, Aubrey W, et al. (2009) The automation of science. Science 324: 85–89. doi: 10.1126/science.1165620
[61]
King RD, Whelan KE, Jones FM, Reiser PG, Bryant CH, et al. (2004) Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427: 247–252. doi: 10.1038/nature02236
[62]
Sparkes A, Aubrey W, Byrne E, Clare A, Khan MN, et al. (2010) Towards Robot Scientists for autonomous scientific discovery. Autom Exp 2: 1. doi: 10.1186/1759-4499-2-1