Background Adult Clonorchis sinensis live in the bile duct and cause clonorchiasis. It is known that the C. sinensis metacercariae excyst in the duodenum and migrate up to the bile duct through the common bile duct. However, no direct evidence is available on the in vivo migration of newly excysted C. sinensis juveniles (CsNEJs). Advanced imaging technologies now allow the in vivo migration and localization to be visualized. In the present study, we sought to determine how sensitively CsNEJs respond to bile and how fast they migrate to the intrahepatic bile duct using PET-CT. Methodology/Principal Findings CsNEJs were radiolabeled with 18F-fluorodeoxyglucose (18F-FDG). Rabbits with a gallbladder contraction response to cholecystokinin-8 (CCK-8) injection were pre-screened using cholescintigraphy. In these rabbits, gallbladders contracted by 50% in volume at an average of 11.5 min post-injection. The four rabbits examined were kept anesthetized and a catheter inserted into the mid duodenum. Gallbladder contraction was stimulated by injecting CCK-8 (20 ng/kg every minute) over the experiment. Anatomical images were acquired by CT initially and dynamic PET was then carried out for 90 min with a 3-min acquisition per frame. Twelve minutes after CCK-8 injection, about 3,000 18F-FDG-labeled CsNEJs were inoculated into the mid duodenum through the catheter. Photon signals were detected in the liver 7–9 min after CsNEJs inoculation, and these then increased in the whole liver with stronger intensity in the central area, presenting that the CsNEJs were arriving at the intrahepatic bile ducts. Conclusion In the duodenum, CsNEJs immediately sense bile and migrate quickly with bile-chemotaxis to reach the intrahepatic bile ducts by way of the ampulla of Vater.
References
[1]
Hong ST, Fang Y (2011) Clonorchis sinensis and clonorchiasis, an update. Parasitol Int. D.O.I.: 10.1016/j.parint.2011.06.007.
[2]
Kim TS, Cho SH, Huh S, Kong Y, Sohn WM, et al. (2009) A nationwide survey on the prevalence of intestinal parasitic infections in the Republic of Korea, 2004. Korean J Parasitol 47: 37–47. doi: 10.3347/kjp.2009.47.1.37
[3]
Rim HJ (1986) The current pathobiology and chemotherapy of clonorchiasis. Korean J Parasitol 24: Suppl1–141. doi: 10.3347/kjp.1986.24.suppl.1
[4]
Rim HJ (2005) Clonorchiasis: an update. J Helminthol 79: 269–281. doi: 10.1079/JOH2005300
[5]
Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, et al. (2009) A review of human carcinogens-Part B: biological agents. Lancet Oncol 10: 321–322. doi: 10.1016/S1470-2045(09)70096-8
[6]
Li S, Chung YB, Chung BS, Choi MH, Yu JR, et al. (2004) The involvement of the cysteine proteases of Clonorchis sinensis metacercariae in excystment. Parasitol Res 93: 36–40. doi: 10.1007/s00436-004-1097-5
[7]
Sun T, Chou ST, Gibson JB (1968) Route of entry of Clonorchis sinensis to the mammalian liver. Exp Parasitol 22: 346–351. doi: 10.1016/0014-4894(68)90111-2
[8]
Heussler V, Doerig C (2006) In vivo imaging enters parasitology. Trends Parasitol 22: 192–195. doi: 10.1016/j.pt.2006.03.001
Hong SJ, Seong KY, Sohn WM, Song KY (2000) Molecular cloning and immunological characterization of phosphoglycerate kinase from Clonorchis sinensis. Mol Biochem Parasitol 108: 207–216. doi: 10.1016/S0166-6851(00)00220-6
[11]
Skelly PJ, Tielens AG, Shoemaker CB (1998) Glucose Transport and Metabolism in Mammalian-stage Schistosomes. Parasitol Today 14: 402–406. doi: 10.1016/S0169-4758(98)01319-2
[12]
Krautz-Peterson G, Simoes M, Faghiri Z, Ndegwa D, Oliveira G, et al. (2010) Suppressing glucose transporter gene expression in schistosomes impairs parasite feeding and decreases survival in the mammalian host. PLoS Pathog 6: e1000932. doi: 10.1371/journal.ppat.1000932
[13]
Yoo WG, Kim DW, Ju JW, Cho PY, Kim TI, et al. (2011) Developmental Transcriptomic Features of the Carcinogenic Liver Fluke, Clonorchis sinensis. PLoS Negl Trop Dis 5: e1208. doi: 10.1371/journal.pntd.0001208
[14]
Han SS, Hahn HJ, Seo BS (1961) The uptake of 14C-glucose by Clonorchis sinensis. Korean J Intn Med 4: 281–285.
[15]
Pauwels EK, Ribeiro MJ, Stoot JH, McCready VR, Bourguignon M, et al. (1998) FDG accumulation and tumor biology. Nucl Med Biol 25: 317–322. doi: 10.1016/S0969-8051(97)00226-6
[16]
Li S, Kim TI, Yoo WG, Cho PY, Kim TS, Hong SJ (2008) Bile components and amino acids affect survival of the newly excysted juvenile Clonorchis sinensis in maintaining media. Parasitol Res 103: 1019–1024. doi: 10.1007/s00436-008-1084-3
[17]
Zhang XY, Cui GB, Ma KJ, Wang S, Wei YN, et al. (2008) Sphincter of Oddi dysfunction in hypercholesterolemic rabbits. Eur J Gastroenterol Hepatol 20: 202–208. doi: 10.1097/MEG.0b013e3282f1d6ee
Salem N, Balkman JD, Wang J, Wilson DL, Lee Z, et al. (2010) In vivo imaging of schistosomes to assess disease burden using positron emission tomography (PET). PLoS Negl Trop Dis 4: e827. doi: 10.1371/journal.pntd.0000827
[20]
Wykoff DE (1958) Studies on Clonorchis sinensis. III. The hostparasite relations in the rabbit and observations on the relative susceptibility of certain laboratory hosts. J Parasitol 44: 461–466. doi: 10.2307/3274404
[21]
Hong ST, Park KH, Seo M, Choi BI, Chai JY, et al. (1994) Correlation of sonographic findings with histopathological changes of the bile ducts in rabbits infected with Clonorchis sinensis. Korean J Parasitol 32: 223–230. doi: 10.3347/kjp.1994.32.4.223
[22]
Hong ST, Kho WG, Kim WH, Chai JY, Lee SH (1993) Turnover of biliary epithelial cells in Clonorchis sinensis infected rats. Korean J Parasitol 31: 83–89. doi: 10.3347/kjp.1993.31.2.83
[23]
Hoffman JM, Gambhir SS (2007) Molecular imaging: the vision and opportunity for radiology in the future. Radiology 244: 39–47. doi: 10.1148/radiol.2441060773
[24]
Zhong C, Skelly PJ, Leaffer D, Cohn RG, Caulfield JP, et al. (1995) Immunolocalization of a Schistosoma mansoni facilitated diffusion glucose transporter to the basal, but not the apical, membranes of the surface syncytium. Parasitology 110: 383–394. doi: 10.1017/S0031182000064726
[25]
Skelly PJ, Shoemaker CB (1996) Rapid appearance and asymmetric distribution of glucose transporter SGTP4 at the apical surface of intramammalian-stage Schistosoma mansoni. Proc Natl Acad Sci USA 93: 3642–3646. doi: 10.1073/pnas.93.8.3642
[26]
Sarva RP, Shreiner DP, Van Thiel D, Yingvorapant N (1985) Gallbladder function: methods for measuring filling and emptying. J Nucl Med 26: 140–144.
[27]
Krishinamurthy GT, Bobba VR, Kingston E (1981) Radionuclide ejection fraction: a technique for quantitative analysis of motor function of the human gallbladder. Gastroenterology 80: 482–490.
[28]
Spellman SJ, Shaffer EA, Rosenthall L (1979) Gallbladder emptying in response to cholecystokinin: a cholescintigraphic study. Gastroenterology 77: 115–120.
[29]
Krishnamurthy GT, Leberman D, Brar HS (1985) Detection, localization, and quantifications of degree of common bile duct obstruction by scintigraphy. J Nucl Med 25: 726–735.
[30]
Krishnamurthy GT (1982) Acute cholecystitis: The diagnostic role for current imaging tests. West J Med 173: 87–94.
[31]
Fink-Bennett D, DeRidder P, Kolozsi WZ, Gordon R, Jaros R (1991) Cholecystokinin choelscintigrapy: detection of abnormal gallbladder motor fuction in patients with chronic acalculous gallbladder disease. J Nucl Med 32: 1695–1699.
[32]
Becker HD, Werner M, Schafmayer A (1984) Release of radioimmunologic chlecystokine in human subjects. Am J Surg 147: 124–129. doi: 10.1016/0002-9610(84)90045-X