Background Salmonella enterica serotype Typhi is the cause of typhoid fever. It is a human-restricted pathogen, and few data exist on S. Typhi gene expression in humans. Methodology/Principal Findings We applied an RNA capture and amplification technique, Selective Capture of Transcribed Sequences (SCOTS), and microarray hybridization to identify S. Typhi transcripts expressed in the blood of five humans infected with S. Typhi in Bangladesh. In total, we detected the expression of mRNAs for 2,046 S. Typhi genes (44% of the S. Typhi genome) in human blood; expression of 912 genes was detected in all 5 patients, and expression of 1,100 genes was detected in 4 or more patients. Identified transcripts were associated with the virulence-associated PhoP regulon, Salmonella pathogenicity islands, the use of alternative carbon and energy sources, synthesis and transport of iron, thiamine, and biotin, and resistance to antimicrobial peptides and oxidative stress. The most highly represented group were genes currently annotated as encoding proteins designated as hypothetical, unknown, or unclassified. Of the 2,046 detected transcripts, 1,320 (29% of the S. Typhi genome) had significantly different levels of detection in human blood compared to in vitro cultures; detection of 141 transcripts was significantly different in all 5 patients, and detection of 331 transcripts varied in at least 4 patients. These mRNAs encode proteins of unknown function, those involved in energy metabolism, transport and binding, cell envelope, cellular processes, and pathogenesis. We confirmed increased expression of a subset of identified mRNAs by quantitative-PCR. Conclusions/Significance We report the first characterization of bacterial transcriptional profiles in the blood of patients with typhoid fever. S. Typhi is an important global pathogen whose restricted host range has greatly inhibited laboratory studies. Our results suggest that S. Typhi uses a largely uncharacterized genetic repertoire to survive within cells and utilize alternate energy sources during infection.
References
[1]
Crump JA, Luby SP, Mintz ED (2004) The global burden of typhoid fever. Bull World Health Organ 82: 346–353.
[2]
Watson KG, Holden DW (2010) Dynamics of growth and dissemination of Salmonella in vivo. Cell Microbiol 12: 1389–1397. doi: 10.1111/j.1462-5822.2010.01511.x
[3]
Song J, Willinger T, Rongvaux A, Eynon EE, Stevens S, et al. (2010) A mouse model for the human pathogen Salmonella typhi. Cell Host Microbe 8: 369–376. doi: 10.1016/j.chom.2010.09.003
[4]
Haraga A, Ohlson MB, Miller SI (2008) Salmonellae interplay with host cells. Nat Rev Microbiol 6: 53–66. doi: 10.1038/nrmicro1788
[5]
McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, et al. (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413: 852–856. doi: 10.1038/35101614
[6]
Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, et al. (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413: 848–852. doi: 10.1038/35101607
[7]
Daigle F, Graham JE, Curtiss R 3rd (2001) Identification of Salmonella typhi genes expressed within macrophages by selective capture of transcribed sequences (SCOTS). Mol Microbiol 41: 1211–1222. doi: 10.1046/j.1365-2958.2001.02593.x
[8]
Faucher SP, Curtiss R 3rd, Daigle F (2005) Selective capture of Salmonella enterica serovar Typhi genes expressed in macrophages that are absent from the Salmonella enterica serovar Typhimurium genome. Infect Immun 73: 5217–5221. doi: 10.1128/IAI.73.8.5217-5221.2005
[9]
Faucher SP, Porwollik S, Dozois CM, McClelland M, Daigle F (2006) Transcriptome of Salmonella enterica serovar Typhi within macrophages revealed through the selective capture of transcribed sequences. Proc Natl Acad Sci U S A 103: 1906–1911. doi: 10.1073/pnas.0509183103
[10]
Graham JE, Clark-Curtiss JE (1999) Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci U S A 96: 11554–11559. doi: 10.1073/pnas.96.20.11554
[11]
Daigle F, Hou JY, Clark-Curtiss JE (2002) Microbial gene expression elucidated by selective capture of transcribed sequences (SCOTS). Methods Enzymol 358: 108–122. doi: 10.1016/s0076-6879(02)58083-6
[12]
Sheikh A, Charles RC, Rollins SM, Harris JB, Bhuiyan MS, et al. (2010) Analysis of Salmonella enterica serotype Paratyphi A gene expression in the blood of bacteremic patients in Bangladesh. PLoS Negl Trop Dis 4: e908. doi: 10.1371/journal.pntd.0000908
[13]
Giannella RA (1996) Salmonella. In: Baron S, editor. Medical Microbiology. Galveston, Texas: University of Texas Medical Branch at Galveston.
[14]
Froussard P (1992) A random-PCR method (rPCR) to construct whole cDNA library from low amounts of RNA. Nucleic Acids Res 20: 2900. doi: 10.1093/nar/20.11.2900
[15]
Rollins SM, Peppercorn A, Young JS, Drysdale M, Baresch A, et al. (2008) Application of in vivo induced antigen technology (IVIAT) to Bacillus anthracis. PLoS One 3: e1824. doi: 10.1371/journal.pone.0001824
[16]
Charles RC, Harris JB, Chase MR, Lebrun LM, Sheikh A, et al. (2009) Comparative proteomic analysis of the PhoP regulon in Salmonella enterica serovar Typhi versus Typhimurium. PLoS One 4: e6994. doi: 10.1371/journal.pone.0006994
[17]
Galan JE (1999) Interaction of Salmonella with host cells through the centisome 63 type III secretion system. Curr Opin Microbiol 2: 46–50. doi: 10.1016/S1369-5274(99)80008-3
[18]
Groisman EA (2001) The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183: 1835–1842. doi: 10.1128/JB.183.6.1835-1842.2001
[19]
Kato A, Groisman EA, Howard Hughes Medical Institute (2008) The PhoQ/PhoP regulatory network of Salmonella enterica. Adv Exp Med Biol 631: 7–21. doi: 10.1007/978-0-387-78885-2_2
[20]
Monsieurs P, De Keersmaecker S, Navarre WW, Bader MW, De Smet F, et al. (2005) Comparison of the PhoPQ regulon in Escherichia coli and Salmonella typhimurium. J Mol Evol 60: 462–474. doi: 10.1007/s00239-004-0212-7
[21]
Galan JE (1996) Molecular genetic bases of Salmonella entry into host cells. Mol Microbiol 20: 263–271. doi: 10.1111/j.1365-2958.1996.tb02615.x
[22]
Hernandez LD, Hueffer K, Wenk MR, Galan JE (2004) Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304: 1805–1807. doi: 10.1126/science.1098188
Giacomodonato MN, Uzzau S, Bacciu D, Caccuri R, Sarnacki SH, et al. (2007) SipA, SopA, SopB, SopD and SopE2 effector proteins of Salmonella enterica serovar Typhimurium are synthesized at late stages of infection in mice. Microbiology 153: 1221–1228. doi: 10.1099/mic.0.2006/002758-0
[25]
Knodler LA, Vallance BA, Celli J, Winfree S, Hansen B, et al. (2010) Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia. Proc Natl Acad Sci U S A 107: 17733–17738. doi: 10.1073/pnas.1006098107
[26]
Pan Q, Zhang XL, Wu HY, He PW, Wang F, et al. (2005) Aptamers that preferentially bind type IVB pili and inhibit human monocytic-cell invasion by Salmonella enterica serovar Typhi. Antimicrob Agents Chemother 49: 4052–4060. doi: 10.1128/AAC.49.10.4052-4060.2005
[27]
Zhang XL, Tsui IS, Yip CM, Fung AW, Wong DK, et al. (2000) Salmonella enterica serovar Typhi uses type IVB pili to enter human intestinal epithelial cells. Infect Immun 68: 3067–3073. doi: 10.1128/IAI.68.6.3067-3073.2000
[28]
Pickard D, Wain J, Baker S, Line A, Chohan S, et al. (2003) Composition, acquisition, and distribution of the Vi exopolysaccharide-encoding Salmonella enterica pathogenicity island SPI-7. J Bacteriol 185: 5055–5065. doi: 10.1128/JB.185.17.5055-5065.2003
[29]
Stocker BA (1988) Auxotrophic Salmonella typhi as live vaccine. Vaccine 6: 141–145. doi: 10.1016/S0264-410X(88)80017-3
[30]
McFarland WC, Stocker BA (1987) Effect of different purine auxotrophic mutations on mouse-virulence of a Vi-positive strain of Salmonella dublin and of two strains of Salmonella Typhimurium. Microb Pathog 3: 129–141. doi: 10.1016/0882-4010(87)90071-4
[31]
Blanc-Potard AB, Groisman EA (1997) The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J 16: 5376–5385. doi: 10.1093/emboj/16.17.5376
[32]
Papp-Wallace KM, Nartea M, Kehres DG, Porwollik S, McClelland M, et al. (2008) The CorA Mg2+ channel is required for the virulence of Salmonella enterica serovar Typhimurium. J Bacteriol 190: 6517–6523. doi: 10.1128/JB.00772-08
[33]
Smith RL, Kaczmarek MT, Kucharski LM, Maguire ME (1998) Magnesium transport in Salmonella typhimurium: regulation of mgtA and mgtCB during invasion of epithelial and macrophage cells. Microbiology 144(Pt 7): 1835–1843. doi: 10.1099/00221287-144-7-1835
[34]
Zaharik ML, Cullen VL, Fung AM, Libby SJ, Kujat Choy SL, et al. (2004) The Salmonella enterica serovar Typhimurium divalent cation transport systems MntH and SitABCD are essential for virulence in an Nramp1G169 murine typhoid model. Infect Immun 72: 5522–5525. doi: 10.1128/IAI.72.9.5522-5525.2004
[35]
Klumpp J, Fuchs TM (2007) Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. Microbiology 153: 1207–1220. doi: 10.1099/mic.0. 2006/004747-0
[36]
Stojiljkovic I, Baumler AJ, Heffron F (1995) Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J Bacteriol 177: 1357–1366.
[37]
Conner CP, Heithoff DM, Julio SM, Sinsheimer RL, Mahan MJ (1998) Differential patterns of acquired virulence genes distinguish Salmonella strains. Proc Natl Acad Sci U S A 95: 4641–4645. doi: 10.1073/pnas.95.8.4641
[38]
Maier RJ, Olczak A, Maier S, Soni S, Gunn J (2004) Respiratory hydrogen use by Salmonella enterica serovar Typhimurium is essential for virulence. Infect Immun 72: 6294–6299. doi: 10.1128/IAI.72.11.6294-6299.2004
[39]
Zbell AL, Maier SE, Maier RJ (2008) Salmonella enterica serovar Typhimurium NiFe uptake-type hydrogenases are differentially expressed in vivo. Infect Immun 76: 4445–4454. doi: 10.1128/IAI.00741-08
[40]
Cain BD, Norton PJ, Eubanks W, Nick HS, Allen CM (1993) Amplification of the bacA gene confers bacitracin resistance to Escherichia coli. J Bacteriol 175: 3784–3789.
[41]
Nishino K, Latifi T, Groisman EA (2006) Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol 59: 126–141. doi: 10.1111/j.1365-2958.2005.04940.x
[42]
Parra-Lopez C, Baer MT, Groisman EA (1993) Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella Typhimurium.. EMBO J 12: 4053–4062.
[43]
Gunn JS, Ryan SS, Van Velkinburgh JC, Ernst RK, Miller SI (2000) Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar Typhimurium. Infect Immun 68: 6139–6146. doi: 10.1128/IAI.68.11.6139-6146.2000
[44]
Baker SJ, Gunn JS, Morona R (1999) The Salmonella typhi melittin resistance gene pqaB affects intracellular growth in PMA-differentiated U937 cells, polymyxin B resistance and lipopolysaccharide. Microbiology 145(Pt 2): 367–378. doi: 10.1099/13500872-145-2-367
[45]
Detweiler CS, Monack DM, Brodsky IE, Mathew H, Falkow S (2003) virK, somA and rcsC are important for systemic Salmonella enterica serovar Typhimurium infection and cationic peptide resistance. Mol Microbiol 48: 385–400. doi: 10.1046/j.1365-2958.2003.03455.x
[46]
Bjur E, Eriksson-Ygberg S, Aslund F, Rhen M (2006) Thioredoxin 1 promotes intracellular replication and virulence of Salmonella enterica serovar Typhimurium. Infect Immun 74: 5140–5151. doi: 10.1128/IAI.00449-06
[47]
Spector MP, Garcia del Portillo F, Bearson SM, Mahmud A, Magut M, et al. (1999) The rpoS-dependent starvation-stress response locus stiA encodes a nitrate reductase (narZYWV) required for carbon-starvation-inducible thermotolerance and acid tolerance in Salmonella typhimurium. Microbiology 145(Pt 11): 3035–3045.
[48]
Buchmeier NA, Lipps CJ, So MY, Heffron F (1993) Recombination-deficient mutants of Salmonella typhimurium are avirulent and sensitive to the oxidative burst of macrophages. Mol Microbiol 7: 933–936. doi: 10.1111/j.1365-2958.1993.tb01184.x