全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluation of Amoebicidal Potential of Paneth Cell Cryptdin-2 against Entamoeba histolytica

DOI: 10.1371/journal.pntd.0001386

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Amoebiasis is a major public health problem in tropical and subtropical countries. Currently, metronidazole is the gold choice medication for the treatment of this disease. However, reports have indicated towards the possibility of development of metronidazole-resistance in Entamoeba strains in near future. In view of the emergence of this possibility, in addition to the associated side effects and mutagenic ability of the currently available anti-amoebic drugs, there is a need to explore newer therapeutics against this disease. In this context, the present study evaluated the amoebicidal potential of cryptdin-2 against E. histolytica. Methods/Principal Findings In the present study, cryptdin-2 exhibited potent in-vitro amoebicidal activity against E. histolytica in a concentration dependent manner at a minimum amoebicidal concentration (MAC) of 4 mg/L. Scanning electron microscopy as well as phase contrast microscopic investigations of cryptdin-2 treated trophozoites revealed that the peptide was able to induce significant morphological alterations in terms of membrane wrinkling, leakage of the cytoplasmic contents and damaged plasma membrane suggesting a possible membrane dependent amoebicidal activity. N-phenyl napthylamine (NPN) uptake assay in presence of sulethal, lethal as well as twice the lethal concentrations further confirmed the membrane-dependent mode of action of cryptdin-2 and suggested that the peptide could permeabilize the plasma membrane of E. histolytica. It was also found that cryptdin-2 interfered with DNA, RNA as well as protein synthesis of E. histolytica exerting the highest effect against DNA synthesis. Thus, the macromolecular synthesis studies correlated well with the observations of membrane permeabilization studies. Significance/Conclusions The amoebicidal efficacy of cryptdin-2 suggests that it may be exploited as a promising option to combat amoebiasis or, at least, may act as an adjunct to metronidazole and/or other available anti-amoebic drugs.

References

[1]  Lopez-Soto F, Leon-Sicairos N, Nazmi K, Bolscher JG, de la Garza M (2010) Microbicidal effect of the lactoferrin peptides Lactoferricin 17–30, Lactoferrampin 265–284, and Lactoferrin chimera on the parasite Entamoeba histolytica. Biometals 23: 563–568. doi: 10.1007/s10534-010-9295-3
[2]  World Health Organization (1997) Amoebiasis. WHO Weekly Epi Rec 72: 97–100.
[3]  Haque R, Roy S, Siddique A, Mondal U, Rahman SMM, et al. (2007) Multiplex real-time PCR assay for detection of Entamoeba histolytica, Giardia intestinalis, and Cryptosporidium spp. Am J Trop Med Hyg 76: 713–717.
[4]  Mortimer L, Chadee K (2010) The immunopathogenesis of E. histolytica. Exp Parasitol 126: 366–380. doi: 10.1016/j.exppara.2010.03.005
[5]  Baxt LA, Singh U (2008) New insights into Entamoeba histolytica pathogenesis. Curr Opin Infect Dis 21: 489–494. doi: 10.1097/QCO.0b013e32830ce75f
[6]  Behnia M, Haghighi A, Komeylizadeh H, Tabaei SJS, Abadi A (2008) Inhibitory effects of Iranian Thymus vulgaris extracts on in-vitro growth of Entamoeba histolytica. Korean J Parasitol 46: 153–156. doi: 10.3347/kjp.2008.46.3.153
[7]  Upcroft JA, Campbell RW, Benakli K, Upcroft P, Vanelle P (1999) Efficacy of new 5-nitroimidazoles against metronidazole- susceptible and -resistant Giardia, Trichomonas, and Entamoeba spp. Antimicrob Agents Chemother 43: 73–76.
[8]  Upcroft P, Upcroft JA (2001) Drugs targets mechanisms of resistance in the anaerobic protozoa. Clin Microbiol Rev 14: 150–164. doi: 10.1128/CMR.14.1.150-164.2001
[9]  Samarawickrema NA, Brown DM, Upcroft JA, Thammapalerd N, Upcroft P (1997) Involvement of superoxide dismutase and pyruvate:ferredoxin oxidoreductase in mechanisms of metronidazole resistance in Entamoeba histolytica. J Antimicrob Chemother 40: 833–840. doi: 10.1093/jac/40.6.833
[10]  Wassmann C, Hellberg A, Tannich A, Bruchhaus I (1999) Metronidazole resistance in the protozoan parasite Entamoeba histolytica is associated with increased expression of iron-containing superoxide dismutase and peroxiredoxin and decreased expression of ferredoxin 1 and flavin reductase. J Biol Chem 274: 26051–26056. doi: 10.1074/jbc.274.37.26051
[11]  Downey AS, Graczyk TK, Sullivan DJ (2009) In vitro activity of pyrvinium pamoate against Entamoeba histolytica and Giardia intestinalis using radiolabelled thymidine incorporation and an SYBR Green I-based fluorescence assay. J Antimicrob Chemother 64: 751–754. doi: 10.1093/jac/dkp296
[12]  Mor A (2009) Multifunctional host defense peptides: antiparasitic activities. FEBS Journal 276: 6474–6482. doi: 10.1111/j.1742-4658.2009.07358.x
[13]  Tiana C, Gao B, Rodriguez MC, Lanz-Mendoza H, Ma B, et al. (2008) Gene expression, antiparasitic activity, and functional evolution of the drosomycin family. Molecular Immunology 45: 3909–3916. doi: 10.1016/j.molimm.2008.06.025
[14]  Pascholati CP, Lopera EP, Pavinatto FJ, Caseli L, Nobre TM (2009) The interaction of an antiparasitic peptide active against African sleeping sickness with cell membrane models. Colloids and Surfaces B: Biointerfaces 74: 504–510. doi: 10.1016/j.colsurfb.2009.08.018
[15]  Wiesner J, Vilcinskas A (2010) Antimicrobial peptides: The ancient arm of the human immune system. Virulence 1: 440–464. doi: 10.4161/viru.1.5.12983
[16]  Eisenhauer PB, Harwig SSSL, Lehrer RI (1992) Cryptdins: antimicrobial defensins of the murine small intestine. Infect Immun 60: 3556–3565.
[17]  Selested ME, Miller SI, Henschen AH, Ouellette AJ (1992) Enteric defensins: antibiotic peptide components of intestinal host defence. J Cell Biol 118: 929–936. doi: 10.1083/jcb.118.4.929
[18]  Lencer WI, Cheung G, Strohmeier GR, Currie MG, Ouellette AJ, et al. (1997) Induction of epithelial chloride secretion by channel-forming cryptdins 2 and 3. Proc Natl Acad Sci USA 94: 8585–8589. doi: 10.1073/pnas.94.16.8585
[19]  Preet S, Verma I, Rishi P (2010) Cryptdin-2: a novel therapeutic agent for experimental Salmonella typhimurium infection. J Antimicrob Chemother 65: 991–994. doi: 10.1093/jac/dkq066
[20]  Aley SB, Zimmerman M, Hetsko M, Selsted ME, Gillin FD (1994) Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides. Infect Immun 62: 5397–5403.
[21]  Inoue R, Tsuruta T, Nojima I, Nakayama K, Tsukahara T, et al. (2008) Postnatal changes in the expression of genes for cryptdins 1–6 and the role of luminal bacteria in cryptdin gene expression in mouse small intestine. FEMS Immunol Med Microbiol 52: 407–416. doi: 10.1111/j.1574-695X.2008.00390.x
[22]  Mastroianni JR, Ouellette AJ (2009) α-defensins in enteric innate immunity: functional Paneth cell α-defensins in mouse colonic lumen. J Biol Chem 284: 27848–27856. doi: 10.1074/jbc.M109.050773
[23]  Tanabe H, Ouellette AJ, Cocco MJ, Robinson WE (2004) Differential effects on human immunodeficiency virus Type 1 replication by α-defensins with comparable bactericidal activities. J Virol 78: 11622–11631. doi: 10.1128/JVI.78.21.11622-11631.2004
[24]  Cedillo-Rivera R, Munoz 0 (1992) In vitro susceptibility of Ginrdia intestinalis to albendazole, mebendazole, and other chemotherapeutic agents. J Med Microbiol 37: 221–226. doi: 10.1099/00222615-37-3-221
[25]  Hancock REW, Wong PGW (1984) Compounds which increase the permeability of Pseudomanas aeruginosa outer membrane. Antimicrob Agents Chemother 26: 48–52. doi: 10.1128/AAC.26.1.48
[26]  Mejia-Alvarej R, Kettlun C, Rios E, Stern M, Fill M (1999) Unitary Ca2+ current through cardiac ryanodine receptor channels under quasi-physiological ionic conditions. J Gen Physiology 113: 177–186. doi: 10.1085/jgp.113.2.177
[27]  Rishi P, Preet S, Bharrhan S, Verma I (2011) In vitro and in vivo synergy of cryptdin-2 and ampicillin against Salmonella. Antimicrob Agents Chemother 55: 4176–4182. doi: 10.1128/AAC.00273-11
[28]  De Beer , Edwin J, Johnston CG, Wilson DW (1935) The composition of intestinal secretions. J Biol Chem 108: 113.
[29]  Sladen GE (1971) Conservation of fluid and electrolytes by the human gut. J Clin Path 24: 99–107. doi: 10.1136/jcp.s3-5.1.99
[30]  Nuding S, Fellermann K, Wehkamp J, Mueller HA, Stange EF (2006) A flow cytometric assay to monitor antimicrobial activity of defensins and cationic tissue extracts. J Microbiol Meth 65: 335–345. doi: 10.1016/j.mimet.2005.08.004
[31]  Skerlavaj B, Benincasa M, Risso A, Zanetti M, Gennaro R (1999) SMAP-29: a potent antibacterial and antifungal peptide from sheep leukocytes. FEBS Lett 463: 58–62. doi: 10.1016/S0014-5793(99)01600-2
[32]  Richards RC, O'Neil DB, Thibault P, Ewart KV (2001) Histone H1: an antimicrobial protein of Atlantic salmon (Salmo salar). Biochem Biophys Res Commun 284: 549–555. doi: 10.1006/bbrc.2001.5020
[33]  Sitaram N, Sai KP, Singh S, Sankaran K, Nagaraj R (2002) Structure-function relationship studies on the frog skin antimicrobial peptide tigerinin 1: design of analogs with improved activity and their action on clinical bacterial isolates. Antimicrob Agents Chemother 46: 2279–2283. doi: 10.1128/AAC.46.7.2279-2283.2002
[34]  Shimoda M, Ohki K, Shimamoto Y, Kohashi O (1995) Morphology of defensin treated Staphylococcus aureus. Infect Immun 63: 2886–2891.
[35]  Subbalakshmi C, Krishnakumari V, Nagaraj R, Sitaram N (1996) Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin. FEBS Lett 395: 48–52. doi: 10.1016/0014-5793(96)00996-9
[36]  Fernandez-Lopez S, Kim HS, Choi EC, Delgado M, Granja JR, et al. (2001) Antibacterial agents based on the cyclic D, L-alpha-peptide architecture. Nature 412: 452–455. doi: 10.1038/35086601
[37]  Matsuzaki K (1999) Why and how are peptide-lipid interactions utilized for self-defense? magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462: 1–10. doi: 10.1016/S0005-2736(99)00197-2
[38]  Phadke SM, Lazarevic V, Bahr CC, Islam K, Stolz DB, et al. (2002) Lentivirus lytic peptide- 1 perturbs both outer and inner membranes of Serratia marcescens. Antimicrobial Agents Chemother 46: 2041–2045. doi: 10.1128/aac.46.6.2041-2045.2002
[39]  Lencer WI, Cheung G, Strohmeier GR, Currie MG, Ouellette AJ, et al. (1997) Induction of epithelial chloride secretion by channel-forming cryptdins 2 and 3. Proc Natl Acad Sci USA 94: 8585–8589. doi: 10.1073/pnas.94.16.8585
[40]  Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Bioph Res Comm 244: 253–257. doi: 10.1006/bbrc.1998.8159
[41]  Skerlavaj B, Romeo D, Gennaro R (1990) Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins. Infect Immun 58: 3724–3730.
[42]  Sharma S, Khuller G (2001) DNA as the intracellular secondary target for antibacterial action of human neutrophil peptide-I against Mycobacterium tuberculosis H37Ra. Curr Microbiol 43: 74–76. doi: 10.1007/s002840010263
[43]  Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE (2002) Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46: 605–614. doi: 10.1128/AAC.46.3.605-614.2002
[44]  Yenugu S, Hamil KG, Radhakrishnan Y, French FS, Hall SH (2004) The Androgen regulated epididymal sperm-binding protein, ESC42 is an antimicrobial Beta-defensin. Endocrinology 145: 3165–3173. doi: 10.1210/en.2003-1698

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133