全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Integrated Dataset of Screening Hits against Multiple Neglected Disease Pathogens

DOI: 10.1371/journal.pntd.0001412

Full-Text   Cite this paper   Add to My Lib

Abstract:

New chemical entities are desperately needed that overcome the limitations of existing drugs for neglected diseases. Screening a diverse library of 10,000 drug-like compounds against 7 neglected disease pathogens resulted in an integrated dataset of 744 hits. We discuss the prioritization of these hits for each pathogen and the strong correlation observed between compounds active against more than two pathogens and mammalian cell toxicity. Our work suggests that the efficiency of early drug discovery for neglected diseases can be enhanced through a collaborative, multi-pathogen approach.

References

[1]  Nwaka S, Hudson A (2006) Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov 5: 941–955. doi: 10.1038/nrd2144
[2]  Geary TG, Woo K, McCarthy JS, Mackenzie CD, Horton J, et al. (2010) Unresolved issues in anthelmintic pharmacology for helminthiases of humans. Int J Parasitol 40(1): 1–13. doi: 10.1016/j.ijpara.2009.11.001
[3]  Plouffe D, Brinker A, McNamara C, Henson K, Kato N, et al. (2008) In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc Natl Acad Sci U S A 105: 9059–9064. doi: 10.1073/pnas.0802982105
[4]  Gamo FJ, Sanz LM, Vidal J, de Cozar C, Alvarez E, et al. (2010) Thousands of chemical starting points for antimalarial lead identification. Nature 465: 305–310. doi: 10.1038/nature09107
[5]  Jakobsen P, Ming-Wei W, Nwaka S (2011) Innovative Partnerships for Drug Discovery against Neglected Diseases. PLoS Negl Trop Dis 5(9). doi: 10.1371/journal.pntd.0001221
[6]  Gutteridge WE (2006) TDR collaboration with the pharmaceutical industry. Trans R Soc Trop Med Hyg 100: Suppl 1S21–3. doi: 10.1016/j.trstmh.2006.02.013
[7]  Ridley R (2007) Applying science to the diseases of poverty. Bull World Health Organ 85(7): 509–10.
[8]  Greenwood D (1995) Historical perspective. Conflicts of interest: the genesis of synthetic antimalarial agents in peace and war. J Antimiaob Chemother 36: 857–872. doi: 10.1093/jac/36.5.857
[9]  Fidock DA, Rosenthal PJ, Croft SL, Brun R, Nwaka S (2004) Antimalarial drug discovery: efficacy models for compound screening. Nat Rev Drug Discov 3(6): 509–20. doi: 10.1038/nrd1416
[10]  Caffrey CR, Steverding D (2008) Recent initiatives and strategies to developing new drugs for tropical parasitic diseases. Expert Opinion in Drug Discovery 3: 173–186. doi: 10.1517/17460441.3.2.173
[11]  Nwaka S, Ilunga TB, Santos da Silva J, Rial Verde E, Hackley D, et al. (2010) Developing ANDI: a novel approach to health product R&D in Africa. PLoS Medicine 7: e1000293. doi: 10.1371/journal.pmed.1000293
[12]  Geary TG, Woods DJ, Williams T, Nwaka S, Drug Discovery in Infectious Diseases, ed (2009) Target identification and mechanism-based screening for anthelmintics: Application of veterinary antiparasitic research programmes to search for new antiparasitic drugs for human indications. pp. 1–16. P. Selzer, Wiley-VCH.
[13]  Rottman M, McNamara C, Yeung BKS, Lee MCS, Zou B, et al. (2010) Spiroindolones, a potent compound class for the treatment of malaria. Science 329: 1175–1170. doi: 10.1126/science.1193225
[14]  Charman SA, Arbe-Barnes S, Bathurst IC, Brun R, Campbell M, et al. (2011) Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria, Proc Natl Acad Sci 108: 4400–5. doi: 10.1073/pnas.1015762108
[15]  Murray HW (2010) Treatment of visceral leishmaniasis in 2010: direction from Bihar State, India. Future Microbiol 5: 1301–3. doi: 10.2217/fmb.10.92
[16]  Nwaka S, Ramirez B, Brun R, Maes L, Douglas , et al. (2009) Advancing drug innovation for neglected diseases – criteria for lead progression. PLoS Negl Trop Dis 3: e440. doi: 10.1371/journal.pntd.0000440
[17]  Baniecki ML, Wirth DF, Clardy J (2007) High-throughput Plasmodium falciparum growth assay for malaria drug discovery. Antimicrob Agents Chemother 51(2): 716–723. doi: 10.1128/AAC.01144-06
[18]  Guiguemde WA, Shelat AA, Bouck D, Duffy S, Crowther GJ, et al. (2010) Chemical genetics of Plasmodium falciparum. Nature 465: 311–315. doi: 10.1038/nature09099
[19]  Lucumi E, Darling C, Jo H, Napper AD, Chandramohandas R, et al. (2010) Discovery of potent small-molecule inhibitors of multidrug-resistant Plasmodium falciparum using a novel miniaturized high-throughput luciferase-based assay. Antimicrob Agents Chemother 54(9): 3597–3604. doi: 10.1128/AAC.00431-10
[20]  Engel JC, Ang KK, Chen S, Arkin MR, McKerrow JH, et al. (2010) Image-based high-throughput drug screening targeting the intracellular stage of Trypanosoma cruzi, the agent of Chagas' disease. Antimicrob Agents Chemother 54: 3326–34. doi: 10.1128/AAC.01777-09
[21]  Hudson A, Nwaka S (2007) The concept paper on the Helminth Drug Initiative. Onchocerciasis/lymphatic filariasis and schistosomiasis: opportunities and challenges for the discovery of new drugs/diagnostics. Expert Opin Drug Discov 2(Suppl. 1): S3–S7. doi: 10.1517/17460441.2.s1.s3
[22]  World Health Organization/Tropical Diseases Research, Annual Report 2009: Drug Development and Evaluation for Helminths and Other Neglected Tropical Diseases. http://apps.who.int/tdr/publications/abo?ut-tdr/annual-reports/bl6-annual-report/?pdf/bl6-annual-report-2009.pdf.
[23]  Sayed AA, Simeonov A, Thomas CJ, Inglese J, Austin CP, et al. (2008) Identification of oxadiazoles as new drug leads for the control of schistosomiasis. Nat Med 14(4): 407–12. doi: 10.1038/nm1737
[24]  Bost F, Jacobs RT, Kowalczyk P (2010) Informatics for neglected diseases collaborations. Curr Opin Drug Discov Devel 13(3): 286–96.
[25]  Tripos web site Available: http://tripos.com/index.php?family=modul?es,SimplePage,,,&page=SYBYL-X. Accessed 2011 Nov 1).
[26]  Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 1;46(1–3): 3–26. doi: 10.1016/j.addr.2012.09.019
[27]  Liu B, Zhu F, Huang Y, Wang Y, Yu F, et al. (2010) Screening rules for leads of fungicides, herbicides and insecticides. J Agri Food Chem 58(5): 2673–84. doi: 10.1021/jf902639x
[28]  Ekins S, Kaneko T, Lipinski CA, Bradford J, Dole K, et al. (2010) Analysis and hit filtering of a very large library of compounds screened against Mycobacterium tuberculosis. Mol Biosyst 6(11): 2316–24). doi: 10.1039/c0mb00104j
[29]  Accelrys web site. Available: http://accelrys.com/solutions/science/ch?emistry/computational.html. Accessed 2011 Nov 1).
[30]  Townson S, Ramirez B, Fakorede F, Mouries MA, Nwaka S (2007) Challenges in drug discovery for novel antifilarials. Exp Opin Drug Discov 2: S63–S73. doi: 10.1517/17460441.2.s1.s63
[31]  Ramirez B, Bickle Q, Yousif F, Fakorede F, Mouries MA, et al. (2007) Schistosomes: challenges in compound screening. Exp Opin Drug Discov 2: S53–S61. doi: 10.1517/17460441.2.s1.s53
[32]  Cos P, Vlietinck AJ, Berghe DV, Maes L (2006) Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’ J Ethnopharmacol 106: 290–302. doi: 10.1016/j.jep.2006.04.003
[33]  Abdel-Sattar E, Maes L, Salama MM (2010) In vitro activities of plant extracts from Saudi Arabia against malaria, leishmaniasis, sleeping sickness and Chagas disease. Phytother Res 24(9): 1322–8. doi: 10.1002/ptr.3108
[34]  Vik A, Proszenyak A, Vermeersch M, Cos P, Maes , et al. (2009) Screening of agelasine D and analogs for inhibitory activity against pathogenic protozoa: identification of hits for visceral leishmaniasis and Chagas disease. Molecules 1491): 279–88. doi: 10.3390/molecules14010279
[35]  Valdes AF, Martinez JM, Lizama RS, Vermeersch M, Cos P, et al. (2008) In vitro antimicrobial activity of the Cuban medicinal plants Simarouba glauca DC, Melaleuca leucadendron L and Artemisia absinthium L. Mem Inst Oswaldo Cruz 103(6): 615–8]. (2007). doi: 10.1590/S0074-02762008000600019
[36]  Maes L, Vanden Berghe D, Germonprez N, Quirijnen L, Cos P, et al. (2004) In vitro and in vivo activities of a triterpenoid saponin extract [PX-6518] from the plant Maesa balance against visceral leishmania species. Antimicrob Agents Chemother 48(1): 130–6). doi: 10.1128/AAC.48.1.130-136.2004
[37]  Mansour NR, Bickle QD (2010) Comparison of microscopy and Alamar blue reduction in a larval based assay for schistosome drug screening. PLoS Negl Trop Dis 4 (8): e795). doi: 10.1371/journal.pntd.0000795
[38]  Agüero F, Al-Lazikani B, Aslett M, Berriman M, Buckner FS, et al. (2008) Genomic-scale prioritization of drug targets: the TDR Targets database. Nat Rev Drug Discov 7(11): 900–907. doi: 10.1038/nrd2684
[39]  Crowther GJ, Shanmugam D, Carmona SJ, Doyle MA, Hertz-Fowler C, et al. (2010) Identification of attractive drug targets in neglected-disease pathogens using an in silico approach. PLoS Negl Trop Dis 4: e804. doi: 10.1371/journal.pntd.0000804
[40]  Buckner FS (2008) Advances in Experimental Medicine and Biology, Volume 625, Chapter 6, Sterol 14-Demethylase Inhibitors for Trypanosoma cruzi infections.
[41]  Nwaka S, Ridley RG (2003) Virtual drug discovery and development for neglected diseases through public-private partnerships. Nat Rev Drug Discov 2: 919–28. doi: 10.1038/nrd1230
[42]  Pica-Mattoccia L, Novi A, Cioli D (1997) Enzymatic basis for the lack of oxamniquine activity in Schistosoma haematobium infections. Parasitology Res 83(7): 687–9. doi: 10.1007/s004360050320

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133