Background When mosquitoes infected with DENV are feeding, the proboscis must traverse the epidermis several times (“probing”) before reaching a blood vessel in the dermis. During this process, the salivary glands release the virus, which is likely to interact first with cells of the various epidermal and dermal layers, cells which could be physiologically relevant to DENV infection and replication in humans. However, important questions are whether more abundant non-hematopoietic cells such as fibroblasts become infected, and whether they play any role in antiviral innate immunity in the very early stages of infection, or even if they might be used by DENV as primary replication cells. Methodology/Principal Findings Fibroblasts freshly released from healthy skin and infected 12 hours after their isolation show a positive signal for DENV. In addition, when primary skin fibroblast cultures were established and subsequently infected, we showed DENV-2 antigen-positive intracellular signal at 24 hours and 48 hours post-infection. Moreover, the fibroblasts showed productive infection in a conventional plaque assay. The skin fibroblasts infected with DENV-2 underwent potent signaling through both TLR3 and RIG- 1, but not Mda5, triggering up-regulation of IFNβ, TNFα, defensin 5 (HB5) and β defensin 2 (HβD2). In addition, DENV infected fibroblasts showed increased nuclear translocation of interferon (IFN) regulatory factor 3 (IRF3), but not interferon regulatory factor 7 (IRF7), when compared with mock-infected fibroblasts. Conclusions/Significance In this work, we demonstrated the high susceptibility to DENV infection by primary fibroblasts from normal human skin, both in situ and in vitro. Our results suggest that these cells may contribute to the pro-inflammatory and anti-viral microenvironment in the early stages of interaction with DENV-2. Furthermore, the data suggest that fibroblast may also be used as a primary site of DENV replication and provide viral particles that may contribute to subsequent viral dissemination.
References
[1]
Murrell S, Wu SC, Butler M (2011) Review of dengue virus and the development of a vaccine. Biotechnology advances 29: 239–247. doi: 10.1016/j.biotechadv.2010.11.008
[2]
Lindenbach BD, Rice CM (2003) Molecular biology of flaviviruses. Adv Virus Res 59: 23–61. doi: 10.1016/s0065-3527(03)59002-9
[3]
Navarro-Sanchez E, Despres P, Cedillo-Barron L (2005) Innate immune responses to dengue virus. Archives of Medical Research 36: 425–435. doi: 10.1016/j.arcmed.2005.04.007
[4]
Limon-Flores AY, Del Campo Jay GM, Calderon-Amador J, Flores-Langarica A, Santos-Mendoza T, et al. (2008) Dendritic Cells and Dengue virus infection in human skin. In: Sealand S, editor. Recent Advances in Skin Immunology. Kerala, India: Research Singpost. pp. 249–261.
[5]
Limon-Flores AY, Perez-Tapia M, Estrada-Garcia I, Vaughan G, Escobar-Gutierrez A, et al. (2005) Dengue virus inoculation to human skin explants: an effective approach to assess in situ the early infection and the effects on cutaneous dendritic cells. Int J Exp Pathol 86: 323–334. doi: 10.1111/j.0959-9673.2005.00445.x
[6]
Noisakran S, Onlamoon N, Songprakhon P, Hsiao H-M, Chokephaibulkit K, et al. (2010) Cells in Dengue Virus Infection In Vivo. Advances in Virology 2010: 1–16. doi: 10.1155/2010/164878
[7]
Ramasubramanian MK, Barham OM, Swaminathan V (2008) Mechanics of a mosquito bite with applications to microneedle design. Bioinspir Biomim 3: 046001. doi: 10.1088/1748-3182/3/4/046001
[8]
Kurane I, Janus J, Ennis FA (1992) Dengue virus infection of human skin fibroblasts in vitro production of IFN-beta, IL-6 and GM-CSF. Archives of virology 124: 21–30. doi: 10.1007/BF01314622
[9]
Wu SJ, Grouard-Vogel G, Sun W, Mascola JR, Brachtel E, et al. (2000) Human skin Langerhans cells are targets of dengue virus infection. Nat Med 6: 816–820. doi: 10.1038/77553
[10]
Paladino P, Cummings DT, Noyce RS, Mossman KL (2006) The IFN-independent response to virus particle entry provides a first line of antiviral defense that is independent of TLRs and retinoic acid-inducible gene I. J Immunol 177: 8008–8016.
[11]
Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9: 679–691. doi: 10.1038/nri2622
[12]
Nielsen DG (2009) The relationship of interacting immunological components in dengue pathogenesis. Virol J 6: 211. doi: 10.1186/1743-422X-6-211
Meylan E, Tschopp J (2006) Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol Cell 22: 561–569. doi: 10.1016/j.molcel.2006.05.012
[15]
Goodbourn S, Randall RE (2009) The regulation of type I interferon production by paramyxoviruses. J Interferon Cytokine Res 29: 539–547. doi: 10.1089/jir.2009.0071
[16]
Honda K, Taniguchi T (2006) IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6: 644–658. doi: 10.1038/nri1900
[17]
Paun A, Pitha PM (2007) The IRF family, revisited. Biochimie 89: 744–753. doi: 10.1016/j.biochi.2007.01.014
[18]
Tsai YT, Chang SY, Lee CN, Kao CL (2009) Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol 11: 604–615. doi: 10.1111/j.1462-5822.2008.01277.x
[19]
Warke RV, Xhaja K, Martin KJ, Fournier MF, Shaw SK, et al. (2003) Dengue virus induces novel changes in gene expression of human umbilical vein endothelial cells. J Virol 77: 11822–11832. doi: 10.1128/JVI.77.21.11822-11832.2003
[20]
Wang JP, Liu P, Latz E, Golenbock DT, Finberg RW, et al. (2006) Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J Immunol 177: 7114–7121.
[21]
Chang TH, Liao CL, Lin YL (2006) Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-kappaB activation. Microbes Infect 8: 157–171. doi: 10.1016/j.micinf.2005.06.014
[22]
Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, et al. (2008) Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 82: 335–345. doi: 10.1128/JVI.01080-07
[23]
Conceicao TM, El-Bacha T, Villas-Boas CS, Coello G, Ramirez J, et al. (2010) Gene expression analysis during dengue virus infection in HepG2 cells reveals virus control of innate immune response. J Infect 60: 65–75. doi: 10.1016/j.jinf.2009.10.003
[24]
Seo YJ, Hahm B (2010) Type I interferon modulates the battle of host immune system against viruses. Adv Appl Microbiol 73: 83–101. doi: 10.1016/S0065-2164(10)73004-5
[25]
Shresta S, Sharar KL, Prigozhin DM, Beatty PR, Harris E (2006) Murine model for dengue virus-induced lethal disease with increased vascular permeability. J Virol 80: 10208–10217. doi: 10.1128/JVI.00062-06
[26]
Shresta S, Sharar KL, Prigozhin DM, Snider HM, Beatty PR, et al. (2005) Critical roles for both STAT1-dependent and STAT1-independent pathways in the control of primary dengue virus infection in mice. J Immunol 175: 3946–3954.
[27]
Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, et al. (2004) Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol 78: 2701–2710. doi: 10.1128/JVI.78.6.2701-2710.2004
[28]
Schroder JM, Harder J (2006) Antimicrobial skin peptides and proteins. Cellular and molecular life sciences (CMLS) 63: 469–486. doi: 10.1007/s00018-005-5364-0
Garcia-Cordero J, Ramirez HR, Vazquez-Ochoa M, Gutierrez-Castaneda B, Santos-Argumedo L, et al. (2005) Production and characterization of a monoclonal antibody specific for NS3 protease and the ATPase region of Dengue-2 virus. Hybridoma (Larchmt) 24: 160–164. doi: 10.1089/hyb.2005.24.160
[31]
Bartenschlager R, Pietschmann T (2005) Efficient hepatitis C virus cell culture system: what a difference the host cell makes. Proc Natl Acad Sci U S A 102: 9739–9740. doi: 10.1073/pnas.0504296102
[32]
Sumpter R Jr, Loo YM, Foy E, Li K, Yoneyama M, et al. (2005) Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. Journal of virology 79: 2689–2699. doi: 10.1128/JVI.79.5.2689-2699.2005
[33]
Diamond MS, Edgil D, Roberts TG, Lu B, Harris E (2000) Infection of human cells by dengue virus is modulated by different cell types and viral strains. J Virol 74: 7814–7823. doi: 10.1128/JVI.74.17.7814-7823.2000
[34]
Katze MG, He Y, Gale M Jr (2002) Viruses and interferon: a fight for supremacy. Nat Rev Immunol 2: 675–687. doi: 10.1038/nri888
[35]
Barber GN (2001) Host defense, viruses and apoptosis. Cell Death Differ 8: 113–126. doi: 10.1038/sj.cdd.4400823
[36]
Falschlehner C, Schaefer U, Walczak H (2009) Following TRAIL's path in the immune system. Immunology 127: 145–154. doi: 10.1111/j.1365-2567.2009.03058.x
[37]
Herbein G, O'Brien WA (2000) Tumor necrosis factor (TNF)-alpha and TNF receptors in viral pathogenesis. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine 223: 241–257. doi: 10.1046/j.1525-1373.2000.22335.x
[38]
Chen LF, Greene WC (2004) Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 5: 392–401. doi: 10.1038/nrm1368
[39]
Michallet MC, Meylan E, Ermolaeva MA, Vazquez J, Rebsamen M, et al. (2008) TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 28: 651–661. doi: 10.1016/j.immuni.2008.03.013
[40]
Mathew A, Rothman AL (2008) Understanding the contribution of cellular immunity to dengue disease pathogenesis. Immunol Rev 225: 300–313. doi: 10.1111/j.1600-065X.2008.00678.x
[41]
Pierson TC, Diamond MS (2008) Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection. Expert Rev Mol Med 10: e12. doi: 10.1017/S1462399408000665
[42]
Taweechaisupapong S, Sriurairatana S, Angsubhakorn S, Yoksan S, Khin MM, et al. (1996) Langerhans cell density and serological changes following intradermal immunisation of mice with dengue 2 virus. J Med Microbiol 45: 138–145. doi: 10.1099/00222615-45-2-138
[43]
Sun P, Fernandez S, Marovich MA, Palmer DR, Celluzzi CM, et al. (2009) Functional characterization of ex vivo blood myeloid and plasmacytoid dendritic cells after infection with dengue virus. Virology 383: 207–215. doi: 10.1016/j.virol.2008.10.022
[44]
Rodriguez-Madoz JR, Bernal-Rubio D, Kaminski D, Boyd K, Fernandez-Sesma A (2010) Dengue virus inhibits the production of type I interferon in primary human dendritic cells. J Virol 84: 4845–4850. doi: 10.1128/JVI.02514-09
[45]
Ader DB, Celluzzi C, Bisbing J, Gilmore L, Gunther V, et al. (2004) Modulation of dengue virus infection of dendritic cells by Aedes aegypti saliva. Viral Immunol 17: 252–265. doi: 10.1089/0882824041310496
[46]
Styer LM, Lim PY, Louie KL, Albright RG, Kramer LD, et al. (2011) Mosquito saliva causes enhancement of West Nile virus infection in mice. J Virol 85: 1517–1527. doi: 10.1128/JVI.01112-10
[47]
Juhn J, Naeem-Ullah U, Maciel Guedes BA, Majid A, Coleman J, et al. (2011) Spatial mapping of gene expression in the salivary glands of the dengue vector mosquito, Aedes aegypti. Parasit Vectors 4: 1. doi: 10.1186/1756-3305-4-1
[48]
Thangamani S, Higgs S, Ziegler S, Vanlandingham D, Tesh R, et al. (2010) Host immune response to mosquito-transmitted chikungunya virus differs from that elicited by needle inoculated virus. PLoS One 5: e12137. doi: 10.1371/journal.pone.0012137
[49]
Schneider BS, Higgs S (2008) The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response. Trans R Soc Trop Med Hyg 102: 400–408. doi: 10.1016/j.trstmh.2008.01.024
[50]
Vasquez Ochoa M, Garcia Cordero J, Gutierrez Castaneda B, Santos Argumedo L, Villegas Sepulveda N, et al. (2009) A clinical isolate of dengue virus and its proteins induce apoptosis in HMEC-1 cells: a possible implication in pathogenesis. Arch Virol 154: 919–928. doi: 10.1007/s00705-009-0396-7
[51]
Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, et al. (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America 99: 12877–12882. doi: 10.1073/pnas.162488599
[52]
Styer LM, Kent KA, Albright RG, Bennett CJ, Kramer LD, et al. (2007) Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathogens 3: 1262–1270. doi: 10.1371/journal.ppat.0030132