全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Recent, Independent and Anthropogenic Origins of Trypanosoma cruzi Hybrids

DOI: 10.1371/journal.pntd.0001363

Full-Text   Cite this paper   Add to My Lib

Abstract:

The single celled eukaryote Trypanosoma cruzi, a parasite transmitted by numerous species of triatomine bug in the Americas, causes Chagas disease in humans. T. cruzi generally reproduces asexually and appears to have a clonal population structure. However, two of the six major circulating genetic lineages, TcV and TcVI, are TcII-TcIII inter-lineage hybrids that are frequently isolated from humans in regions where chronic Chagas disease is particularly severe. Nevertheless, a prevalent view is that hybridisation events in T. cruzi were evolutionarily ancient and that active recombination is of little epidemiological importance. We analysed genotypes of hybrid and non-hybrid T. cruzi strains for markers representing three distinct evolutionary rates: nuclear GPI sequences (n = 88), mitochondrial COII-ND1 sequences (n = 107) and 28 polymorphic microsatellite loci (n = 35). Using Maximum Likelihood and Bayesian phylogenetic approaches we dated key evolutionary events in the T. cruzi clade including the emergence of hybrid lineages TcV and TcVI, which we estimated to have occurred within the last 60,000 years. We also found evidence for recent genetic exchange between TcIII and TcIV and between TcI and TcIV. These findings show that evolution of novel recombinants remains a potential epidemiological risk. The clearly distinguishable microsatellite genotypes of TcV and TcVI were highly heterozygous and displayed minimal intra-lineage diversity indicative of even earlier origins than sequence-based estimates. Natural hybrid genotypes resembled typical meiotic F1 progeny, however, evidence for mitochondrial introgression, absence of haploid forms and previous experimental crosses indicate that sexual reproduction in T. cruzi may involve alternatives to canonical meiosis. Overall, the data support two independent hybridisation events between TcII and TcIII and a recent, rapid spread of the hybrid progeny in domestic transmission cycles concomitant with, or as a result of, disruption of natural transmission cycles by human activities.

References

[1]  WHO (2002) The World Health Report, 2002. Geneva: World Health Organisation.
[2]  Brisse S, Barnabé C, Tibayrenc M (2000) Identification of six Trypanosoma cruzi phylogenetic lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. Int J Parasitol 30: 35–44. doi: 10.1016/S0020-7519(99)00168-X
[3]  Brisse S, Verhoef J, Tibayrenc M (2001) Characterisation of large and small subunit rRNA and mini-exon genes further supports the distinction of six Trypanosoma cruzi lineages. Int J Parasitol 31: 1218–1226. doi: 10.1016/S0020-7519(01)00238-7
[4]  Zingales B, Andrade SG, Briones MRS, Campbell DA, Chiari E, et al. (2009) A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104: 1051–1054. doi: 10.1590/S0074-02762009000700021
[5]  Tibayrenc M, Neubauer K, Barnabé C, Guerrini F, Skarecky D, et al. (1993) Genetic characterization of six parasitic protozoa: parity between random-primer DNA typing and multilocus enzyme electrophoresis. Proc Natl Acad Sci USA 90: 1335–1339. doi: 10.1073/pnas.90.4.1335
[6]  Oliveira RP, Broude NE, Macedo AM, Cantor CR, Smith CL, et al. (1998) Probing the genetic population structure of Trypanosoma cruzi with polymorphic microsatellites. Proc Natl Acad Sci USA 95: 3776–3780. doi: 10.1073/pnas.95.7.3776
[7]  Barnabé C, Brisse S, Tibayrenc M (2000) Population structure and genetic typing of Trypanosoma cruzi, the agent of Chagas disease: a multilocus enzyme electrophoresis approach. Parasitology 120: 513–526. doi: 10.1017/S0031182099005661
[8]  Llewellyn MS, Miles MA, Carrasco HJ, Lewis MD, Yeo M, et al. (2009) Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specific genotypes linked to human infection. PLoS Pathog 5: e1000410. doi: 10.1371/journal.ppat.1000410
[9]  Oca?a-Mayorga S, Llewellyn MS, Costales JA, Miles MA, Grijalva MJ (2011) Sex, Subdivision, and Domestic Dispersal of Trypanosoma cruzi Lineage I in Southern Ecuador. PLoS Negl Trop Dis 4: e915.
[10]  Rougeron V, De Mee?s T, Hide M, Waleckx E, Bermudez H, et al. (2009) Extreme inbreeding in Leishmania braziliensis. Proc Natl Acad Sci USA 106: 10224–10229. doi: 10.1073/pnas.0904420106
[11]  Prugnolle F, De Mee?s T (2010) Apparent high recombination rates in clonal parasitic organisms due to inappropriate sampling design. Heredity 104: 135–140. doi: 10.1038/hdy.2009.128
[12]  Heitman J (2006) Sexual Reproduction and the Evolution of Microbial Pathogens. Current Biology 16: R711–R725. doi: 10.1016/j.cub.2006.07.064
[13]  Awadalla P (2003) The evolutionary genomics of pathogen recombination. Nat Rev Genet 4: 50–60. doi: 10.1038/nrg964
[14]  Brisse S, Henriksson J, Barnabé C, Douzery EJP, Berkvens D, et al. (2003) Evidence for genetic exchange and hybridization in Trypanosoma cruzi based on nucleotide sequences and molecular karyotype. Infect Genet Evol 2: 173–183. doi: 10.1016/S1567-1348(02)00097-7
[15]  de Freitas JM, Augusto-Pinto L, Pimenta JR, Bastos-Rodrigues L, Gon?alves VF, et al. (2006) Ancestral Genomes, Sex, and the Population Structure of Trypanosoma cruzi. PLoS Pathog 2: e24. doi: 10.1371/journal.ppat.0020024
[16]  Machado CA, Ayala FJ (2001) Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of Trypanosoma cruzi. Proc Natl Acad Sci USA 98: 7396–7401. doi: 10.1073/pnas.121187198
[17]  Westenberger SJ, Barnabé C, Campbell DA, Sturm NR (2005) Two hybridization events define the population structure of Trypanosoma cruzi. Genetics 171: 527–543. doi: 10.1534/genetics.104.038745
[18]  Tibayrenc M, Ayala FJ (2002) The clonal theory of parasitic protozoa: 12 years on. Trends Parasitol 18: 405–410. doi: 10.1016/S1471-4922(02)02357-7
[19]  Gaunt MW, Yeo M, Frame IA, Stothard JR, Carrasco HJ, et al. (2003) Mechanism of genetic exchange in American trypanosomes. Nature 421: 936–939. doi: 10.1038/nature01438
[20]  Lewis MD, Llewellyn MS, Gaunt MW, Yeo M, Carrasco HJ, et al. (2009) Flow cytometric analysis and microsatellite genotyping reveal extensive DNA content variation in Trypanosoma cruzi populations and expose contrasts between natural and experimental hybrids. Int J Parasitol 39: 1305–1317. doi: 10.1016/j.ijpara.2009.04.001
[21]  Malik S-B, Pightling AW, Stefaniak LM, Schurko AM, Logsdon JM Jr (2008) An Expanded Inventory of Conserved Meiotic Genes Provides Evidence for Sex in Trichomonas vaginalis. PLoS ONE 3: e2879. doi: 10.1371/journal.pone.0002879
[22]  Ramesh MA, Malik SB, Logsdon JM (2005) A phylogenomic inventory of meiotic genes: Evidence for sex in Giardia and an early eukaryotic origin of meiosis. Current Biology 15: 185–191. doi: 10.1016/j.cub.2005.01.003
[23]  Lewis MD, Ma J, Yeo M, Carrasco HJ, Llewellyn MS, et al. (2009) Genotyping of Trypanosoma cruzi: Systematic Selection of Assays Allowing Rapid and Accurate Discrimination of All Known Lineages. Am J Trop Med Hyg 81: 1041–1049. doi: 10.4269/ajtmh.2009.09-0305
[24]  Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882. doi: 10.1093/nar/25.24.4876
[25]  Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. doi: 10.1093/bioinformatics/btp187
[26]  Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol 24: 1596–1599. doi: 10.1093/molbev/msm092
[27]  Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120. doi: 10.1007/BF01731581
[28]  Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512–526.
[29]  Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101: 11030–11035. doi: 10.1073/pnas.0404206101
[30]  Yang Z (2007) PAML 4: a program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591. doi: 10.1093/molbev/msm088
[31]  Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16: 1114–1116. doi: 10.1093/oxfordjournals.molbev.a026201
[32]  Drummond A, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: 214. doi: 10.1186/1471-2148-7-214
[33]  Drummond AJ, Ho S, Phillips M, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4: e88. doi: 10.1371/journal.pbio.0040088
[34]  Stevens J, Noyes H, Dover G, Gibson W (1999) The ancient and divergent origins of the human pathogenic trypanosomes, Trypanosoma brucei and T. cruzi. Parasitology 118: 107–116. doi: 10.1017/S0031182098003473
[35]  Rambaut A, Drummond A (2009) Tracer v1.5, Available from http://beast.bio.ed.ac.uk/Tracer.
[36]  Llewellyn MS, Lewis MD, Acosta N, Yeo M, Carrasco HJ, et al. (2009) Trypanosoma cruzi IIc: Phylogenetic and Phylogeographic Insights from Sequence and Microsatellite Analysis and Potential Impact on Emergent Chagas Disease. PLoS Negl Trop Dis 3: e510. doi: 10.1371/journal.pntd.0000510
[37]  Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49: 725–738.
[38]  Excoffier L, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.
[39]  Goudet J (1995) FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics. J Hered 86: 485–486.
[40]  Meyerhans A, Vartanian J-P, Wain-Hobson S (1990) DNA recombination during PCR. Nucleic Acids Res 18: 1687–1691. doi: 10.1093/nar/18.7.1687
[41]  Tanabe K, Sakihama N, F?rnert A, Rooth I, Bj?rkman A, et al. (2002) In vitro recombination during PCR of Plasmodium falciparum DNA: a potential pitfall in molecular population genetic analysis. Mol Biochem Parasitol 122: 211–216. doi: 10.1016/S0166-6851(02)00095-6
[42]  Chapman M, Baggaley R, Godfrey-Fausset P, Malpas T, White G, et al. (1984) Trypanosoma cruzi from the Paraguayan Chaco: isoenzyme profiles of strains isolated at Makthlawaiya. J Protozool 31: 482–486. doi: 10.1111/j.1550-7408.1984.tb02999.x
[43]  Yeo M, Acosta N, Llewellyn M, Sanchez H, Adamson S, et al. (2005) Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. Int J Parasitol 35: 225–233. doi: 10.1016/j.ijpara.2004.10.024
[44]  Simpson AGB, Stevens JR, Luke? J (2006) The evolution and diversity of kinetoplastid flagellates. Trends Parasitol 22: 168–174. doi: 10.1016/j.pt.2006.02.006
[45]  Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13: 729–744. doi: 10.1046/j.1365-294X.2003.02063.x
[46]  Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet 16: 551–558. doi: 10.1016/S0168-9525(00)02139-9
[47]  Coates AG, Obando JA (1996) The geologic evolution of the Central American isthmus. In: Jackson JBC, Budd AF, Coates AG, editors. Evolution and Environment in Tropical America. Chicago: University of Chicago Press. pp. 21–56.
[48]  Pough FH, Janis CM, Heiser JB (1999) Vertebrate Life. Upper Saddle River, New Jersey: Prentice Hall.
[49]  Sturm NR, Campbell DA (2010) Alternative lifestyles: The population structure of Trypanosoma cruzi. Acta Trop 115: 35–43. doi: 10.1016/j.actatropica.2009.08.018
[50]  Cox CB, Moore PD (2000) Biogeography. An Ecological and Evolutionary Approach. Oxford, U.K.: Blackwell.
[51]  Patterson JS, Gaunt MW (2010) Phylogenetic multi-locus codon models and molecular clocks reveal the monophyly of haematophagous reduviid bugs and their evolution at the formation of South America. Mol Phylogenet Evol 56: 608–621. doi: 10.1016/j.ympev.2010.04.038
[52]  Hamilton PB, Adams ER, Njiokou F, Gibson WC, Cuny G, et al. (2009) Phylogenetic analysis reveals the presence of the Trypanosoma cruzi clade in African terrestrial mammals. Infect Genet Evol 9: 81–86. doi: 10.1016/j.meegid.2008.10.011
[53]  Hoare C (1972) The Trypanosomes of Mammals. Oxford: Blackwell.
[54]  Tibayrenc M, Ayala F (1988) Isozyme variability of Trypanosoma cruzi, the agent of Chagas' disease: genetical, taxonomical and epidemiological significance. Evolution 42: 277–292. doi: 10.2307/2409232
[55]  Miles MA, B WA, Widmer G, Povoa MM, Schofield CJ (1984) Isozyme heterogeneity and numerical taxonomy of Trypanosoma cruzi stocks from Chile. T Roy Soc Trop Med H 78: 526–535. doi: 10.1016/0035-9203(84)90076-2
[56]  Souto RP, Fernandes O, Macedo AM, Campbell DA, Zingales B (1996) DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol Biochem Parasitol 83: 141–152. doi: 10.1016/S0166-6851(96)02755-7
[57]  Yeo M, Mauricio IL, Messenger LA, Lewis MD, Llewellyn MS, et al. (2011) Multilocus sequence typing (MLST) for lineage assignment and high resolution diversity studies in Trypanosoma cruzi. PLoS Negl Trop Dis. in press. doi: 10.1371/journal.pntd.0001049
[58]  Miles MA, Feliciangeli MD, de Arias AR (2003) American trypanosomiasis (Chagas disease) and the role of molecular epidemiology in guiding control strategies. Brit Med J 326: 1444–1448. doi: 10.1136/bmj.326.7404.1444
[59]  Miles M, Cedillos R, Povoa M, de Souza A, Prata A, et al. (1981) Do radically dissimilar Trypanosoma cruzi strains (zymodemes) cause Venezuelan and Brazilian forms of Chagas' disease? Lancet 317: 1338–1340. doi: 10.1016/S0140-6736(81)92518-6
[60]  Barnabé C, Neubauer K, Solari A, Tibayrenc M (2001) Trypanosoma cruzi: presence of the two major phylogenetic lineages and of several lesser discrete typing units (DTUs) in Chile and Paraguay. Acta Trop 78: 127–137. doi: 10.1016/S0001-706X(00)00183-2
[61]  Bosseno M-F, Barnabé C, Magallon Gastelum E, Lozano Kasten F, Ramsey J, et al. (2002) Predominance of Trypanosoma cruzi Lineage I in Mexico. J Clin Microbiol 40: 627–632. doi: 10.1128/JCM.40.2.627-632.2002
[62]  Brenière SF, Bosseno MF, Noireau F, Yacsik N, Liegeard P, et al. (2002) Integrate Study of a Bolivian Population Infected by Trypanosoma cruzi, the Agent of Chagas Disease. Mem Inst Oswaldo Cruz 97: 289–295. doi: 10.1590/S0074-02762002000300002
[63]  Virreira M, Serrano G, Maldonado L, Svoboda M (2006) Trypanosoma cruzi: typing of genotype (sub)lineages in megacolon samples from bolivian patients. Acta Trop 100: 252–255. doi: 10.1016/j.actatropica.2006.11.005
[64]  Cardinal MV, Lauricella MA, Ceballos LA, Lanati L, Marcet PL, et al. (2008) Molecular epidemiology of domestic and sylvatic Trypanosoma cruzi infection in rural northwestern Argentina. Int J Parasitol 38: 1533–1543. doi: 10.1016/j.ijpara.2008.04.010
[65]  Westenberger SJ, Sturm NR, Campbell DA (2006) Trypanosoma cruzi 5S rRNA arrays define five groups and indicate the geographic origins of an ancestor of the heterozygous hybrids. Int J Parasitol 36: 337–346. doi: 10.1016/j.ijpara.2005.11.002
[66]  Leclerc MC, Durand P, Gauthier C, Patot S, Billotte N, et al. (2004) Meager genetic variability of the human malaria agent Plasmodium vivax. Proc Natl Acad Sci USA 101: 14455–14460. doi: 10.1073/pnas.0405186101
[67]  Bargues MD, Klisiowicz DR, Panzera F, Noireau F, Marcilla A, et al. (2006) Origin and phylogeography of the Chagas disease main vector Triatoma infestans based on nuclear rDNA sequences and genome size. Infect Genet Evol 6: 46–62. doi: 10.1016/j.meegid.2005.01.006
[68]  Dujardin JC, Schofield CJ, Tibayrenc M (1998) Population structure of Andean Triatoma infestans: allozyme frequencies and their epidemiological relevance. Med Vet Entomol 12: 20–29. doi: 10.1046/j.1365-2915.1998.00076.x
[69]  Cortez MR, Monteiro FA, Noireau F (2010) New insights on the spread of Triatoma infestans from Bolivia - Implications for Chagas disease emergence in the Southern Cone. Infect Genet Evol 10: 350–353. doi: 10.1016/j.meegid.2009.12.006
[70]  Noireau F (2009) Wild Triatoma infestans, a potential threat that needs to be monitored. Mem Inst Oswaldo Cruz 104: 60–64. doi: 10.1590/S0074-02762009000900010
[71]  Cortez MR, Pinho AP, Cuervo P, Alfaro F, Solano M, et al. (2006) Trypanosoma cruzi (Kinetoplastida Trypanosomatidae): Ecology of the transmission cycle in the wild environment of the Andean valley of Cochabamba, Bolivia. Exp Parasitol 114: 305–313. doi: 10.1016/j.exppara.2006.04.010
[72]  Goebel T, Waters MR, O'Rourke DH (2008) The Late Pleistocene Dispersal of Modern Humans in the Americas. Science 319: 1497–1502. doi: 10.1126/science.1153569
[73]  Aufderheide AC, Salo W, Madden M, Streitz J, Buikstra J, et al. (2004) A 9,000-year record of Chagas disease. Proc Natl Acad Sci USA 101: 2034–2039. doi: 10.1073/pnas.0307312101
[74]  Fernandes O, Souto R, Castro J, Pereira J, Fernandes N, et al. (1998) Brazilian isolates of Trypanosoma cruzi from humans and triatomines classified into two lineages using mini-exon and ribosomal RNA sequences. Am J Trop Med Hyg 58: 807–811.
[75]  Luquetti AO, Miles MA, Rassi A, De Rezende JM, De Souza AA, et al. (1986) Trypanosoma cruzi: zymodemes associated with acute and chronic Chagas disease in central Brazil. T Roy Soc Trop Med H 80: 462–470. doi: 10.1016/0035-9203(86)90347-0
[76]  Miles MA, Llewellyn MS, Lewis MD, Yeo M, Baleela R, et al. (2009) The molecular epidemiology and phylogeography of Trypanosoma cruzi and parallel research on Leishmania: looking back and to the future. Parasitology 136: 1509–1528. doi: 10.1017/S0031182009990977
[77]  Póvoa M, de Souza A, Naiff R, Arias J, Naiff M, et al. (1984) Chagas disease in the Amazon basin IV. Host records of Trypanosoma cruzi zymodemes in the states of Amazonas and Rondonia, Brazil. Ann Trop Med Parasit 78: 479–487.
[78]  Burgos JM, Altcheh J, Bisio M, Duffy T, Valadares HMS, et al. (2007) Direct molecular profiling of minicircle signatures and lineages of Trypanosoma cruzi bloodstream populations causing congenital Chagas disease. Int J Parasitol 37: 1319–1327. doi: 10.1016/j.ijpara.2007.04.015
[79]  Corrales R, Mora M, Negrette O, Diosque P, Lacunza D, et al. (2009) Congenital Chagas disease involves Trypanosoma cruzi sub-lineage IId in the northwestern province of Salta, Argentina. Infect Genet Evol 9: 278–282. doi: 10.1016/j.meegid.2008.12.008
[80]  Diez C, Lorenz V, Ortiz S, Gonzalez V, Racca A, et al. (2010) Genotyping of Trypanosoma cruzi Sublineage in Human Samples from a North-East Argentina Area by Hybridization with DNA Probes and Specific Polymerase Chain Reaction (PCR). Am J Trop Med Hyg 82: 67–73. doi: 10.4269/ajtmh.2010.09-0391
[81]  Virreira M, Alonso-Vega C, Solano M, Jijena J, Brutus L, et al. (2006) Congenital Chagas disease in Bolivia is not associated with DNA polymorphism of Trypanosoma cruzi. Am J Trop Med Hyg 75: 871–879.
[82]  Akopyants NS, Kimblin N, Secundino N, Patrick R, Peters N, et al. (2009) Demonstration of Genetic Exchange During Cyclical Development of Leishmania in the Sand Fly Vector. Science 324: 265–268. doi: 10.1126/science.1169464
[83]  Gibson WC (1989) Analysis of a genetic cross between Trypanosoma brucei rhodesiense and T. b. brucei. Parasitology 99: 391–402. doi: 10.1017/S0031182000059114
[84]  MacLeod A, Tweedie A, McLellan S, Taylor S, Cooper A, et al. (2005) Allelic segregation and independent assortment in Trypanosoma brucei crosses: Proof that the genetic system is Mendelian and involves meiosis. Mol Biochem Parasitol 143: 12–19. doi: 10.1016/j.molbiopara.2005.04.009
[85]  Sternberg J, Turner CMR, Wells JM, Ranford-Cartwright LC, Le Page RWF, et al. (1989) Gene exchange in African trypanosomes: frequency and allelic segregation. Mol Biochem Parasitol 34: 269–279. doi: 10.1016/0166-6851(89)90056-X
[86]  Turner CMR, Sternberg J, Buchanan N, Smith E, Hide G, et al. (1990) Evidence that the mechanism of gene exchange in Trypanosoma brucei involves meiosis and syngamy. Parasitology 101: 377–386. doi: 10.1017/S0031182000060571
[87]  Gibson W, Peacock L, Ferris V, Williams K, Bailey M (2008) The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei. Parasite Vector 1: 4. doi: 10.1186/1756-3305-1-4
[88]  Hope M, MacLeod A, Leech V, Melville S, Sasse J, et al. (1999) Analysis of ploidy (in megabase chromosomes) in Trypanosoma brucei after genetic exchange. Mol Biochem Parasitol 104: 1–9. doi: 10.1016/S0166-6851(99)00103-6
[89]  Gerstein AC, Chun H-JE, Grant A, Otto SP (2006) Genomic Convergence toward Diploidy in Saccharomyces cerevisiae. PLoS Genet 2: e145. doi: 10.1371/journal.pgen.0020145
[90]  Gerstein AC, McBride RM, Otto SP (2008) Ploidy reduction in Saccharomyces cerevisiae. Biol Letters 4: 91–94. doi: 10.1098/rsbl.2007.0476
[91]  Bennett RJ, Johnson AD (2003) Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J 22: 2505–2515. doi: 10.1093/emboj/cdg235
[92]  Hilton C, Markie D, Corner B, Rikkerink E, Poulter R (1985) Heat shock induces chromosome loss in the yeast Candida albicans. Mol Gen Genet 200: 162–168. doi: 10.1007/BF00383330
[93]  Forche A, Alby K, Schaefer D, Johnson AD, Berman J, et al. (2008) The Parasexual Cycle in Candida albicans Provides an Alternative Pathway to Meiosis for the Formation of Recombinant Strains. PLoS Biol 6: e110. doi: 10.1371/journal.pbio.0060110
[94]  Robello C, Gamarro F, Castanys S, Alvarez-Valin F (2000) Evolutionary relationships in Trypanosoma cruzi: molecular phylogenetics supports the existence of a new major lineage of strains. Gene 246: 331–338. doi: 10.1016/S0378-1119(00)00074-3
[95]  Augusto-Pinto L, Teixeira SMR, Pena SDJ, Machado CR (2003) Single-Nucleotide Polymorphisms of the Trypanosoma cruzi MSH2 Gene Support the Existence of Three Phylogenetic Lineages Presenting Differences in Mismatch-Repair Efficiency. Genetics 164: 117–126.
[96]  Tran A-N, Andersson B, Pettersson U, ?slund L (2003) Trypanothione synthetase locus in Trypanosoma cruzi CL Brener strain shows an extensive allelic divergence. Acta Trop 87: 269–278. doi: 10.1016/S0001-706X(03)00067-6
[97]  Cerqueira GC, Bartholomeu DC, DaRocha WD, Hou L, Freitas-Silva DM, et al. (2008) Sequence diversity and evolution of multigene families in Trypanosoma cruzi. Mol Biochem Parasitol 157: 65–72. doi: 10.1016/j.molbiopara.2007.10.002
[98]  El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, et al. (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309: 409–415. doi: 10.1126/science.1112631
[99]  Lutes AA, Neaves WB, Baumann DP, Wiegraebe W, Baumann P (2010) Sister chromosome pairing maintains heterozygosity in parthenogenetic lizards. Nature 464: 283–286. doi: 10.1038/nature08818
[100]  Kondrashov AS (1997) Evolutionary Genetics of Life Cycles. Annu Rev Ecol Syst 28: 391–435. doi: 10.1146/annurev.ecolsys.28.1.391

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133