全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Potentiating Effects of MPL on DSPC Bearing Cationic Liposomes Promote Recombinant GP63 Vaccine Efficacy: High Immunogenicity and Protection

DOI: 10.1371/journal.pntd.0001429

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Vaccines that activate strong specific Th1-predominant immune responses are critically needed for many intracellular pathogens, including Leishmania. The requirement for sustained and efficient vaccination against leishmaniasis is to formulate the best combination of immunopotentiating adjuvant with the stable antigen (Ag) delivery system. The aim of the present study is to evaluate the effectiveness of an immunomodulator on liposomal Ag through subcutaneous (s.c.) route of immunization, and its usefulness during prime/boost against visceral leishmaniasis (VL) in BALB/c mice. Methodology/Principal Findings Towards this goal, we formulated recombinant GP63 (rGP63)-based vaccines either with monophosphoryl lipid A-trehalose dicorynomycolate (MPL-TDM) or entrapped within cationic liposomes or both. Combinatorial administration of liposomes with MPL-TDM during prime confers activation of dendritic cells, and induces an early robust T cell response. To investigate whether the combined formulation is required for optimum immune response during boost as well, we chose to evaluate the vaccine efficacy in mice primed with combined adjuvant system followed by boosting with either rGP63 alone, in association with MPL-TDM, liposomes or both. We provide evidences that the presence of either liposomal rGP63 or combined formulations during boost is necessary for effective Th1 immune responses (IFN-γ, IL-12, NO) before challenge infection. However, boosting with MPL-TDM in conjugation with liposomal rGP63 resulted in a greater number of IFN-γ producing effector T cells, significantly higher levels of splenocyte proliferation, and Th1 responses compared to mice boosted with liposomal rGP63, after virulent Leishmania donovani (L. donovani) challenge. Moreover, combined formulations offered superior protection against intracellular amastigote replication in macrophages in vitro, and hepatic and splenic parasite load in vivo. Conclusion Our results define the immunopotentiating effect of MPL-TDM on protein Ag encapsulated in a controlled release system against experimental VL.

References

[1]  Desjeux P (2004) Leishmaniasis. Nat Rev Microbiol 2: 692. doi: 10.1038/nrmicro988
[2]  Alvar J, Yactayo S, Bern C (2006) Leishmaniasis and poverty. Trends Parasitol 22: 552–557. doi: 10.1016/j.pt.2006.09.004
[3]  Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, et al. (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5: 873–882. doi: 10.1038/nrmicro1748
[4]  Kedzierski L, Zhu Y, Handman E (2006) Leishmania vaccines: progress and problems. Parasitology 133:: SupplS87–S112. doi: 10.1017/S0031182006001831
[5]  Costa CH, Peters NC, Maruyama SR, de Brito EC Jr, Santos IK (2011) Vaccines for the leishmaniases: proposals for a research agenda. PLoS Negl Trop Dis 5: e943. doi: 10.1371/journal.pntd.0000943
[6]  Uzonna JE, Wei G, Yurkowski D, Bretscher P (2001) Immune elimination of Leishmania major in mice: implications for immune memory, vaccination, and reactivation disease. J Immunol 167: 6967–6974.
[7]  Okwor I, Kuriakose S, Uzonna J (2010) Repeated inoculation of killed Leishmania major induces durable immune response that protects mice against virulent challenge. Vaccine 28: 5451–5457. doi: 10.1016/j.vaccine.2010.05.077
[8]  Bhowmick S, Ravindran R, Ali N (2008) gp63 in stable cationic liposomes confers sustained vaccine immunity to susceptible BALB/c mice infected with Leishmania donovani. Infect Immun 76: 1003–1015. doi: 10.1128/IAI.00611-07
[9]  Bhowmick S, Mazumdar T, Sinha R, Ali N (2010) Comparison of liposome based antigen delivery systems for protection against Leishmania donovani. J Control Release 141: 199–207. doi: 10.1016/j.jconrel.2009.09.018
[10]  Bhowmick S, Mazumdar T, Ali N (2009) Vaccination route that induces transforming growth factor beta production fails to elicit protective immunity against Leishmania donovani infection. Infect Immun 77: 1514–1523. doi: 10.1128/IAI.01739-07
[11]  Kahl LP, Lelchuk R, Scott CA, Beesley J (1990) Characterization of Leishmania major antigen-liposomes that protect BALB/c mice against cutaneous leishmaniasis. Infect Immun 58: 3233–3241.
[12]  Agger EM, Rosenkrands I, Hansen J, Brahimi K, Vandahl BS, et al. (2008) Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements. PLoS One 3: e3116. doi: 10.1371/journal.pone.0003116
[13]  Dietrich J, Billeskov R, Doherty TM, Andersen P (2007) Synergistic effect of bacillus calmette guerin and a tuberculosis subunit vaccine in cationic liposomes: increased immunogenicity and protection. J Immunol 178: 3721–3730.
[14]  Fries LF, Gordon DM, Richards RL, Egan JE, Hollingdale MR, et al. (1992) Liposomal malaria vaccine in humans: a safe and potent adjuvant strategy. Proc Natl Acad Sci U S A 89: 358–362. doi: 10.1073/pnas.89.1.358
[15]  Desombere I, Van der Wielen M, Van Damme P, Stoffel M, De Clercq N, et al. (2002) Immune response of HLA DQ2 positive subjects, vaccinated with HBsAg/AS04, a hepatitis B vaccine with a novel adjuvant. Vaccine 20: 2597–2602. doi: 10.1016/S0264-410X(02)00150-0
[16]  Skeiky YA, Coler RN, Brannon M, Stromberg E, Greeson K, et al. (2002) Protective efficacy of a tandemly linked, multi-subunit recombinant leishmanial vaccine (Leish-111f) formulated in MPL adjuvant. Vaccine 20: 3292–3303. doi: 10.1016/S0264-410X(02)00302-X
[17]  Afrin F, Ali N (1997) Adjuvanticity and protective immunity elicited by Leishmania donovani antigens encapsulated in positively charged liposomes. Infect Immun 65: 2371–2377.
[18]  Mazumder S, Ganguly A, Ali N (2010) The effect of C-terminal domain deletion on the catalytic activity of Leishmania donovani surface proteinase GP63: Role of Ser446 in proteolysis. Biochimie 92: 1876–1885. doi: 10.1016/j.biochi.2010.07.014
[19]  Inaba K, Inaba M, Romani N, Aya H, Deguchi M, et al. (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176: 1693–1702. doi: 10.1084/jem.176.6.1693
[20]  Afrin F, Rajesh R, Anam K, Gopinath M, Pal S, et al. (2002) Characterization of Leishmania donovani antigens encapsulated in liposomes that induce protective immunity in BALB/c mice. Infect Immun 70: 6697–6706. doi: 10.1128/IAI.70.12.6697-6706.2002
[21]  Mazumdar T, Anam K, Ali N (2004) A mixed Th1/Th2 response elicited by a liposomal formulation of Leishmania vaccine instructs Th1 responses and resistance to Leishmania donovani in susceptible BALB/c mice. Vaccine 22: 1162–1171. doi: 10.1016/j.vaccine.2003.09.030
[22]  Titus RG, Marchand M, Boon T, Louis JA (1985) A limiting dilution assay for quantifying Leishmania major in tissues of infected mice. Parasite Immunol 7: 545–555. doi: 10.1111/j.1365-3024.1985.tb00098.x
[23]  Raman VS, Bhatia A, Picone A, Whittle J, Bailor HR, et al. (2010) Applying TLR synergy in immunotherapy: implications in cutaneous leishmaniasis. J Immunol 185: 1701–1710. doi: 10.4049/jimmunol.1000238
[24]  Baldwin SL, Shaverdian N, Goto Y, Duthie MS, Raman VS, et al. (2009) Enhanced humoral and Type 1 cellular immune responses with Fluzone adjuvanted with a synthetic TLR4 agonist formulated in an emulsion. Vaccine 27: 5956–5963. doi: 10.1016/j.vaccine.2009.07.081
[25]  Suzue K, Kobayashi S, Takeuchi T, Suzuki M, Koyasu S (2008) Critical role of dendritic cells in determining the Th1/Th2 balance upon Leishmania major infection. Int Immunol 20: 337–343. doi: 10.1093/intimm/dxm147
[26]  Murray HW, Nathan CF (1999) Macrophage microbicidal mechanisms in vivo: reactive nitrogen versus oxygen intermediates in the killing of intracellular visceral Leishmania donovani. J Exp Med 189: 741–746. doi: 10.1084/jem.189.4.741
[27]  Haldar JP, Ghose S, Saha KC, Ghose AC (1983) Cell-mediated immune response in Indian kala-azar and post-kala-azar dermal leishmaniasis. Infect Immun 42: 702–707.
[28]  Coler RN, Reed SG (2005) Second-generation vaccines against leishmaniasis. Trends Parasitol 21: 244–249. doi: 10.1016/j.pt.2005.03.006
[29]  Lehmann J, Enssle KH, Lehmann I, Emmend?rfer A, Lohmann-Matthes ML (2000) The capacity to produce IFN-gamma rather than the presence of interleukin-4 determines the resistance and the degree of susceptibility to Leishmania donovani infection in mice. J Interferon Cytokine Res 20: 63–77. doi: 10.1089/107999000312748
[30]  Murphy ML, Wille U, Villegas EN, Hunter CA, Farrell JP (2001) IL-10 mediates susceptibility to Leishmania donovani infection. Eur J Immunol 31: 2848–2856. doi: 10.1002/1521-4141(2001010)31:10<2848::AID-IMMU2848>3.0.CO;2-T
[31]  Alexander J, Bryson K (2005) T helper (h)1/Th2 and Leishmania: paradox rather than paradigm. Immunol Lett 99: 17–23. doi: 10.1016/j.imlet.2005.01.009
[32]  Chen DJ, Osterrieder N, Metzger SM, Buckles E, Doody AM, et al. (2010) Delivery of foreign antigens by engineered outer membrane vesicle vaccines. Proc Natl Acad Sci U S A 107: 3099–3104. doi: 10.1073/pnas.0805532107
[33]  Gar?on N, Chomez P, Van Mechelen M (2007) GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev Vaccines 6: 723–739. doi: 10.1586/14760584.6.5.723
[34]  Kazzaz J, Singh M, Ugozzoli M, Chesko J, Soenawan E, et al. (2006) Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. J Control Release 110: 566–573. doi: 10.1016/j.jconrel.2005.10.010
[35]  Suzuki Y, Wakita D, Chamoto K, Narita Y, Tsuji T, et al. (2004) Liposome-encapsulated CpG oligodeoxynucleotides as a potent adjuvant for inducing type 1 innate immunity. Cancer Res 64: 8754–8760. doi: 10.1158/0008-5472.CAN-04-1691
[36]  Mazumder S, Ravindran R, Banerjee A, Ali N (2007) Non-coding pDNA bearing immunostimulatory sequences co-entrapped with leishmanial antigens in cationic liposomes elicits almost complete protection against experimental visceral leishmaniasis in BALB/c mice. Vaccine 25: 8771–8781. doi: 10.1016/j.vaccine.2007.10.028
[37]  Coler RN, Skeiky YA, Bernards K, Greeson K, Carter D, et al. (2002) Immunization with a polyprotein vaccine consisting of the T-Cell antigens thiol-specific antioxidant, Leishmania major stress-inducible protein 1, and Leishmania elongation initiation factor protects against leishmaniasis. Infect Immun 70: 4215–4225. doi: 10.1128/IAI.70.8.4215-4225.2002
[38]  Coler RN, Goto Y, Bogatzki L, Raman V, Reed SG (2007) Leish-111f, a recombinant polyprotein vaccine that protects against visceral Leishmaniasis by elicitation of CD4+ T cells. Infect Immun 75: 4648–4654. doi: 10.1128/IAI.00394-07
[39]  Ulrich JT, Myers KR (1995) Monophosphoryl lipid A as an adjuvant. Past experiences and new directions. Pharm Biotechnol 6: 495–524.
[40]  Baldridge JR, McGowan P, Evans JT, Cluff C, Mossman S, et al. (2004) Taking a Toll on human disease: Toll-like receptor 4 agonists as vaccine adjuvants and monotherapeutic agents. Expert Opin Biol Ther 4: 1129–1138. doi: 10.1517/14712598.4.7.1129
[41]  De Becker G, Moulin V, Pajak B, Bruck C, Francotte M, et al. (2000) The adjuvant monophosphoryl lipid A increases the function of antigen-presenting cells. Int Immunol 12: 807–815. doi: 10.1093/intimm/12.6.807
[42]  Holten-Andersen L, Doherty TM, Korsholm KS, Andersen P (2004) Combination of the cationic surfactant dimethyl dioctadecyl ammonium bromide and synthetic mycobacterial cord factor as an efficient adjuvant for tuberculosis subunit vaccines. Infect Immun 72: 1608–1617. doi: 10.1128/IAI.72.3.1608-1617.2004
[43]  Hovav AH, Davidovitch L, Nussbaum G, Mullerad J, Fishman Y, et al. (2004) Mitogenicity of the recombinant mycobacterial 27-kilodalton lipoprotein is not connected to its antiprotective effect. Infect Immun 72: 3383–3390. doi: 10.1128/IAI.72.6.3383-3390.2004
[44]  Oscherwitz J, Hankenson FC, Yu F, Cease KB (2006) Low-dose intraperitoneal Freund's adjuvant: toxicity and immunogenicity in mice using an immunogen targeting amyloid-beta peptide. Vaccine 24: 3018–3025. doi: 10.1016/j.vaccine.2005.10.046
[45]  Ravindran R, Bhowmick S, Das A, Ali N (2010) Comparison of BCG, MPL and cationic liposome adjuvant systems in leishmanial antigen vaccine formulations against murine visceral leishmaniasis. BMC Microbiol 10: 181. doi: 10.1186/1471-2180-10-181
[46]  Jaafari MR, Badiee A, Khamesipour A, Samiei A, Soroush D, et al. (2007) The role of CpG ODN in enhancement of immune response and protection in BALB/c mice immunized with recombinant major surface glycoprotein of Leishmania (rgp63) encapsulated in cationic liposome. Vaccine 25: 6107–6117. doi: 10.1016/j.vaccine.2007.05.009
[47]  Skeiky YA, Alderson MR, Ovendale PJ, Guderian JA, Brandt L, et al. (2004) Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J Immunol 172: 7618–7628.
[48]  Dietrich J, Aagaard C, Leah R, Olsen AW, Stryhn A, et al. (2005) Exchanging ESAT6 with TB10.4 in an Ag85B fusion molecule-based tuberculosis subunit vaccine: efficient protection and ESAT6-based sensitive monitoring of vaccine efficacy. J Immunol 174: 6332–6339.
[49]  Bhowmick S, Ali N (2008) Recent developments in leishmaniasis vaccine delivery systems. Expert Opin Drug Deliv 5: 789–803. doi: 10.1517/17425247.5.7.789
[50]  Jaafari MR, Ghafarian A, Farrokh-Gisour A, Samiei A, Kheiri MT, et al. (2006) Immune response and protection assay of recombinant major surface glycoprotein of Leishmania (rgp63) reconstituted with liposomes in BALB/c mice. Vaccine 24: 5708–5717. doi: 10.1016/j.vaccine.2006.04.062
[51]  Nordly P, Agger EM, Andersen P, Nielsen HM, Foged C (2011) Incorporation of the TLR4 agonist monophosphoryl lipid A into the bilayer of DDA/TDB liposomes: physico-chemical characterization and induction of CD8+ T-cell responses in vivo. Pharm Res 28: 553–562. doi: 10.1007/s11095-010-0301-9
[52]  Hovav AH, Panas MW, Osuna CE, Cayabyab MJ, Autissier P, et al. (2007) The impact of a boosting immunogen on the differentiation of secondary memory CD8+ T cells. J Virol 81: 12793–12802. doi: 10.1128/JVI.01519-07
[53]  Lu S (2009) Heterologous prime-boost vaccination. Curr Opin Immunol 21: 346–351. doi: 10.1016/j.coi.2009.05.016
[54]  Mazumder S, Maji M, Das A, Ali N (2011) Potency, efficacy and durability of DNA/DNA,DNA/protein and protein/protein based vaccination using gp63 against Leishmania donovani in BALB/c mice. PLoS One 6: e14644. doi: 10.1371/journal.pone.0014644
[55]  Dietrich J, Billeskov R, Doherty TM, Andersen P (2007) Synergistic effect of bacillus calmette guerin and a tuberculosis subunit vaccine in cationic liposomes: increased immunogenicity and protection. J Immunol 178: 3721–3730.
[56]  Macatonia SE, Hsieh CS, Murphy KM, O'Garra A (1993) Dendritic cells and macrophages are required for Th1 development of CD4+ T cells from αβ TCR transgenic mice: IL-12 substitution for macrophages to stimulate IFN-γ production is IFN-γ-dependent. Int Immunol 5: 1119–1128. doi: 10.1093/intimm/5.9.1119
[57]  Seder RA, Gazzinelli R, Sher A, Paul WE (1993) Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon γ production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci USA 90: 10188–10192. doi: 10.1073/pnas.90.21.10188
[58]  Liew FY, Milliott S, Parkinson C, Palmer RM, Moncada S (1990) Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. J Immunol 144: 4794–4797.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133