Human neurocysticercosis (NC) caused by Taenia solium is a parasitic disease of the central nervous system that is endemic in many developing countries. In this study, a genetic approach using the murine intraperitoneal cysticercosis caused by the related cestode Taenia crassiceps was employed to identify host factors that regulate the establishment and proliferation of the parasite. A/J mice are permissive to T. crassiceps infection while C57BL/6J mice (B6) are comparatively restrictive, with a 10-fold difference in numbers of peritoneal cysticerci recovered 30 days after infection. The genetic basis of this inter-strain difference was explored using 34 AcB/BcA recombinant congenic strains derived from A/J and B6 progenitors, that were phenotyped for T. crassiceps replication. In agreement with their genetic background, most AcB strains (A/J-derived) were found to be permissive to infection while most BcA strains (B6-derived) were restrictive with the exception of a few discordant strains, together suggesting a possible simple genetic control. Initial haplotype association mapping using >1200 informative SNPs pointed to linkages on chromosomes 2 (proximal) and 6 as controlling parasite replication in the AcB/BcA panel. Additional linkage analysis by genome scan in informative [AcB55xDBA/2]F1 and F2 mice (derived from the discordant AcB55 strain), confirmed the effect of chromosome 2 on parasite replication, and further delineated a major locus (LOD = 4.76, p<0.01; peak marker D2Mit295, 29.7 Mb) that we designate Tccr1 (T. crassiceps cysticercosis restrictive locus 1). Resistance alleles at Tccr1 are derived from AcB55 and are inherited in a dominant fashion. Scrutiny of the minimal genetic interval reveals overlap of Tccr1 with other host resistance loci mapped to this region, most notably the defective Hc/C5 allele which segregates both in the AcB/BcA set and in the AcB55xDBA/2 cross. These results strongly suggest that the complement component 5 (C5) plays a critical role in early protective inflammatory response to infection with T. crassiceps.
References
[1]
Garcia HH, Gonzalez AE, Evans CAW, Gilman RH, Cysticercosis Working Group in Peru (2003) Taenia solium cysticercosis. Lancet 362: 547–556. doi:10.1016/S0140-6736(03)14117-7.
[2]
Sciutto E, Fragoso G, Fleury A, Laclette JP, Sotelo J, et al. (2000) Taenia solium disease in humans and pigs: an ancient parasitosis disease rooted in developing countries and emerging as a major health problem of global dimensions. Microbes Infect 2: 1875–1890. doi: 10.1016/S1286-4579(00)01336-8
[3]
Fleury A, Morales J, Bobes RJ, Dumas M, Yánez O, et al. (2006) An epidemiological study of familial neurocysticercosis in an endemic Mexican community. Trans R Soc Trop Med Hyg 100: 551–558. doi:10.1016/j.trstmh.2005.08.008.
[4]
Del Brutto OH, Granados G, Talamas O, Sotelo J, Gorodezky C (1991) Genetic pattern of the HLA system: HLA A, B, C, DR, and DQ antigens in Mexican patients with parenchymal brain cysticercosis. Hum Biol 63: 85–93.
[5]
Huerta M, Sciutto E, García G, Villalobos N, Hernández M, et al. (2000) Vaccination against Taenia solium cysticercosis in underfed rustic pigs of México: roles of age, genetic background and antibody response. Vet Parasitol 90: 209–219. doi: 10.1016/S0304-4017(00)00233-8
[6]
Heldwein K, Biedermann H-G, Hamperl W-D, Bretzel G, L?scher T, et al. (2006) Subcutaneous Taenia crassiceps infection in a patient with non-Hodgkin's lymphoma. Am J Trop Med Hyg 75: 108–111.
[7]
Freeman R (1962) Studies on the biology of Taenia crassiceps (Zeder, 1800) Rudolphi, 1810 (Cestoda). Canadian Journal of Zoology 40: 969–990. doi: 10.1139/z62-086
[8]
Dorais FJ, Esch GW (1969) Growth rate of two Taenia crassiceps strains. Exp Parasitol 25: 395–398. doi: 10.1016/0014-4894(69)90086-1
[9]
Willms K, Zurabian R (2010) Taenia crassiceps: in vivo and in vitro models. Parasitology 137: 335–346. doi:10.1017/S0031182009991442.
[10]
Sciutto E, Fragoso G, Trueba L, Lemus D, Montoya RM, et al. (1990) Cysticercosis vaccine: cross protecting immunity with T. solium antigens against experimental murine T. crassiceps cysticercosis. Parasite Immunol 12: 687–696. doi: 10.1111/j.1365-3024.1990.tb00997.x
[11]
Sciutto E, Fragoso G, Diaz ML, Valdez F, Montoya RM, et al. (1991) Murine Taenia crassiceps cysticercosis: H-2 complex and sex influence on susceptibility. Parasitol Res 77: 243–246. doi: 10.1007/BF00930866
[12]
Fragoso G, Lamoyi E, Mellor A, Lomelí C, Hernández M, et al. (1998) Increased resistance to Taenia crassiceps murine cysticercosis in Qa-2 transgenic mice. Infection and Immunity 66: 760–764.
[13]
Meneses G, Berzunza M, Becker I, Bobes RJ, Rosas G, et al. (2009) Taenia crassiceps cysticercosis: variations in its parasite growth permissiveness that encounter with local immune features in BALB/c substrains. Exp Parasitol 123: 362–368. doi:10.1016/j.exppara.2009.09.002.
[14]
Reyes JL, Terrazas CA, Vera-Arias L, Terrazas LI (2009) Differential response of antigen presenting cells from susceptible and resistant strains of mice to Taenia crassiceps infection. Infect Genet Evol 9: 1115–1127. doi:10.1016/j.meegid.2009.05.011.
[15]
Fragoso G, Lamoyi E, Mellor A, Lomelí C, Govezensky T, et al. (1996) Genetic control of susceptibility to Taenia crassiceps cysticercosis. Parasitology 112(Pt 1): 119–124. doi: 10.1017/S003118200006515X
[16]
Fragoso G, Meneses G, Sciutto E, Fleury A, Larralde C (2008) Preferential growth of Taenia crassiceps cysticerci in female mice holds across several laboratory mice strains and parasite lines. J Parasitol 94: 551–553. doi:10.1645/GE-1287.1.
Ibarra-Coronado EG, Escobedo G, Nava-Castro K, Jesús Ramses C-R, Hernández-Bello R, et al. (2011) A helminth cestode parasite express an estrogen-binding protein resembling a classic nuclear estrogen receptor. Steroids 76: 1149–1159. doi:10.1016/j.steroids.2011.05.003.
[19]
Fortin A, Diez E, Rochefort D, Laroche L, Malo D, et al. (2001) Recombinant congenic strains derived from A/J and C57BL/6J: a tool for genetic dissection of complex traits. Genomics 74: 21–35. doi:10.1006/geno.2001.6528.
[20]
Sciutto E, Fragoso G, Baca M, la Cruz De V, Lemus L, et al. (1995) Depressed T-cell proliferation associated with susceptibility to experimental Taenia crassiceps infection. Infection and Immunity 63: 2277–2281.
[21]
Tuite A, Elias M, Picard S, Mullick A, Gros P (2005) Genetic control of susceptibility to Candida albicans in susceptible A/J and resistant C57BL/6J mice. Genes Immun 6: 672–682. doi:10.1038/sj.gene.6364254.
[22]
Wetsel RA, Fleischer DT, Haviland DL (1990) Deficiency of the murine fifth complement component (C5). A 2-base pair gene deletion in a 5′-exon. J Biol Chem 265: 2435–2440.
[23]
Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315–324. doi: 10.1038/hdy.1992.131
[24]
Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889–890. doi: 10.1093/bioinformatics/btg112
[25]
Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, et al. (2008) Efficient Control of Population Structure in Model Organism Association Mapping. Genetics 178: 1709–1723. doi:10.1534/genetics.107.080101.
[26]
Min-Oo G, Fortin A, Pitari G, Tam M, Stevenson MM, et al. (2007) Complex genetic control of susceptibility to malaria: positional cloning of the Char9 locus. J Exp Med 204: 511–524. doi:10.1084/jem.20061252.
[27]
Fortin A, Diez E, Henderson JE, Mogil JS, Gros P, et al. (2007) The AcB/BcA recombinant congenic strains of mice: strategies for phenotype dissection, mapping and cloning of quantitative trait genes. Novartis Found Symp 281: 141–53; discussion 153–5, 208–9. doi: 10.1002/9780470062128.ch12
[28]
Meunier C, Cai J, Fortin A, Kwan T, Marquis J-F, et al. (2010) Characterization of a major colon cancer susceptibility locus (Ccs3) on mouse chromosome 3. Oncogene 29: 647–661. doi:10.1038/onc.2009.369.
[29]
Roy MF, Riendeau N, Loredo-Osti JC, Malo D (2006) Complexity in the host response to Salmonella Typhimurium infection in AcB and BcA recombinant congenic strains. Genes Immun 7: 655–666. doi:10.1038/sj.gene.6364344.
[30]
Radovanovic I, Mullick A, Gros P (2011) Genetic Control of Susceptibility to Infection with Candida albicans in Mice. PLoS ONE 6: e18957. doi:10.1371/journal.pone.0018957.
[31]
Lambris JD, Ricklin D, Geisbrecht BV (2008) Complement evasion by human pathogens. Nat Rev Microbiol 6: 132–142. doi:10.1038/nrmicro1824.
[32]
Zipfel PF (2009) Complement and immune defense: from innate immunity to human diseases. Immunol Lett 126: 1–7. doi:10.1016/j.imlet.2009.07.005.
[33]
Ooi YM, Colten HR (1979) Genetic defect in secretion of complement C5 in mice. Nature 282: 207–208. doi: 10.1038/282207a0
[34]
Siebert AE, Good AH, Simmons JE (1978) Ultrastructural aspects of early immune damage to Taenia crassiceps metacestodes. Int J Parasitol 8: 45–53. doi: 10.1016/0020-7519(78)90050-4
[35]
Davis SW, Hammerberg B (1988) Activation of the alternative pathway of complement by larval Taenia taeniaeformis in resistant and susceptible strains of mice. Int J Parasitol 18: 591–597. doi: 10.1016/0020-7519(88)90092-6
[36]
Letonja T, Hammerberg B (1983) Third component of complement, immunoglobulin deposition, and leucocyte attachment related to surface sulfate on larval Taenia taeniaeformis. J Parasitol 69: 637–644. doi: 10.2307/3281132
[37]
Ferreira AM, Breijo M, Sim RB, Nieto A (2000) Contribution of C5-mediated mechanisms to host defence against Echinococcus granulosus hydatid infection. Parasite Immunol 22: 445–453. doi: 10.1046/j.1365-3024.2000.00323.x
[38]
Terrazas LI, Bojalil R, Govezensky T, Larralde C (1998) Shift from an early protective Th1-type immune response to a late permissive Th2-type response in murine cysticercosis (Taenia crassiceps). J Parasitol 84: 74–81. doi: 10.2307/3284533
[39]
Terrazas LI, Cruz M, Rodríguez-Sosa M, Bojalil R, García-Tamayo F, et al. (1999) Th1-type cytokines improve resistance to murine cysticercosis caused by Taenia crassiceps. Parasitol Res 85: 135–141. doi: 10.1007/s004360050522
[40]
Toenjes SA, Kuhn RE (2003) The initial immune response during experimental cysticercosis is of the mixed Th1/Th2 type. Parasitol Res 89: 407–413. doi:10.1007/s00436-002-0788-z.
[41]
Chavarria A, Roger B, Fragoso G, Tapia G, Fleury A, et al. (2003) TH2 profile in asymptomatic Taenia solium human neurocysticercosis. Microbes Infect 5: 1109–1115. doi: 10.1016/S1286-4579(03)00206-5
[42]
Restrepo BI, Alvarez JI, Casta?o JA, Arias LF, Restrepo M, et al. (2001) Brain granulomas in neurocysticercosis patients are associated with a Th1 and Th2 profile. Infection and Immunity 69: 4554–4560. doi:10.1128/IAI.69.7.4554-4560.2001.
[43]
Mullick A, Elias M, Picard S, Bourget L, Jovcevski O, et al. (2004) Dysregulated inflammatory response to Candida albicans in a C5-deficient mouse strain. Infection and Immunity 72: 5868–5876. doi:10.1128/IAI.72.10.5868-5876.2004.
[44]
Maccallum DM, Castillo L, Brown AJP, Gow NAR, Odds FC (2009) Early-Expressed Chemokines Predict Kidney Immunopathology in Experimental Disseminated Candida albicans Infections. PLoS ONE 4: e6420. doi:10.1371/journal.pone.0006420.t005.
[45]
Balish E, Wagner RD, Vazquez-Torres A, Pierson C, Warner T (1998) Candidiasis in interferon-gamma knockout (IFN-gamma?/?) mice. J Infect Dis 178: 478–487. doi: 10.1086/515645
Rodriguez-Sosa M, David JR, Bojalil R, Satoskar AR, Terrazas LI (2002) Cutting edge: susceptibility to the larval stage of the helminth parasite Taenia crassiceps is mediated by Th2 response induced via STAT6 signaling. J Immunol 168: 3135–3139.
[48]
Rodriguez-Sosa M, Saavedra R, Tenorio EP, Rosas LE, Satoskar AR, et al. (2004) A STAT4-dependent Th1 response is required for resistance to the helminth parasite Taenia crassiceps. Infection and Immunity 72: 4552–4560. doi:10.1128/IAI.72.8.4552-4560.2004.
[49]
Alonso-Trujillo J, Rivera-Montoya I, Rodriguez-Sosa M, Terrazas LI (2007) Nitric oxide contributes to host resistance against experimental Taenia crassiceps cysticercosis. Parasitol Res 100: 1341–1350. doi:10.1007/s00436-006-0424-4.