[1] | Ankarklev J, Jerlstr?m-Hultqvist J, Ringqvist E, Troell K, Sv?rd SG (2010) Behind the smile: cell biology and disease mechanisms of Giardia species. Nat Rev Microbiol 8: 413–422. doi: 10.1038/nrmicro2317
|
[2] | Best AA, Morrison HG, McArthur AG, Sogin ML, Olsen GJ (2004) Evolution of eukaryotic transcription: insights from the genome of Giardia lamblia. Genome Res 14: 1537–1547. doi: 10.1101/gr.2256604
|
[3] | Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14: 447–475. doi: 10.1128/CMR.14.3.447-475.2001
|
[4] | Li L, Wang CC (2004) Capped mRNA with a single nucleotide leader is optimally translated in a primitive eukaryote, Giardia lamblia. J Biol Chem 279: 14656–14664. doi: 10.1074/jbc.M309879200
|
[5] | Miller RL, Wang AL, Wang CC (1988) Purification and characterization of the Giardia lamblia double-stranded RNA virus. Mol Biochem Parasitol 28: 189–195. doi: 10.1016/0166-6851(88)90003-5
|
[6] | Rivero MR, Kulakova L, Touz MC (2010) Long double-stranded RNA produces specific gene downregulation in Giardia lamblia. J Parasitol 96: 815–819. doi: 10.1645/GE-2406.1
|
[7] | Ambros V (2004) The functions of animal microRNAs. Nature 431: 350–355. doi: 10.1038/nature02871
|
[8] | Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233. doi: 10.1016/j.cell.2009.01.002
|
[9] | Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10: 126–139. doi: 10.1038/nrm2632
|
[10] | Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10: 1957–1966. doi: 10.1261/rna.7135204
|
[11] | Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11: 228–234. doi: 10.1038/ncb0309-228
|
[12] | Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303: 95–98. doi: 10.1126/science.1090599
|
[13] | Hutvágner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, et al. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293: 834–838. doi: 10.1126/science.1062961
|
[14] | Knight SW, Bass BL (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293: 2269–2271. doi: 10.1126/science.1062039
|
[15] | Hutvágner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297: 2056–2060. doi: 10.1126/science.1073827
|
[16] | Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, et al. (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16: 720–728. doi: 10.1101/gad.974702
|
[17] | Macrae IJ, Zhou K, Li F, Repic A, Brooks AN, et al. (2006) Structural basis for double-stranded RNA processing by Dicer. Science 311: 195–198. doi: 10.1126/science.1121638
|
[18] | Saraiya AA, Wang CC (2008) snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog 4: e1000224. doi: 10.1371/journal.ppat.1000224
|
[19] | Yang CY, Zhou H, Luo J, Qu LH (2005) Identification of 20 snoRNA-like RNAs from the primitive eukaryote, Giardia lamblia. Biochem Biophys Res Commun 328: 1224–1231. doi: 10.1016/j.bbrc.2005.01.077
|
[20] | Keister DB (1983) Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77: 487–488. doi: 10.1016/0035-9203(83)90120-7
|
[21] | Saraiya AA, Wang CC (2011) A newly identified microRNA that regulates variant surface protein gene expression in Giardia lamblia. RNA. (in revision). doi: 10.1261/rna.028118.111
|
[22] | Rajewsky N, Socci ND (2004) Computational identification of microRNA targets. Dev Biol 267: 529–535. doi: 10.1016/j.ydbio.2003.12.003
|
[23] | Horwich MD, Zamore PD (2008) Design and delivery of antisense oligonucleotides to block microRNA function in cultured Drosophila and human cells. Nat Protoc 3: 1537–1549. doi: 10.1038/nprot.2008.145
|
[24] | Carthew RW, Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136: 642–655. doi: 10.1016/j.cell.2009.01.035
|
[25] | Baek D, Villen J, Shin C, Camargo FD, Gygi SP, et al. (2008) The impact of microRNAs on protein output. Nature 455: 64–71. doi: 10.1038/nature07242
|
[26] | Selbach M, Schwanh?usser B, Thierfelder N, Fang Z, Khanin R, et al. (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455: 58–63. doi: 10.1038/nature07228
|
[27] | John B, Enright AJ, Aravin A, Tuschl T, Sander C, et al. (2005) miRanda algorithm : Human MicroRNA targets. PLoS Biol 3: e264. doi: 10.1371/journal.pbio.0030264
|
[28] | Forman JJ, Legesse-Miller A, Coller HA (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci USA 105: 14879–14884. doi: 10.1073/pnas.0803230105
|
[29] | Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455: 1124–1128. doi: 10.1038/nature07299
|
[30] | Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460: 479–486. doi: 10.1038/nature08170
|
[31] | McArthur AG, Morrison HG, Nixon JE, Passamaneck NQ, Kim U, et al. (2000) The Giardia genome project database. FEMS Microbiol. Lett 189: 271–273. doi: 10.1016/s0378-1097(00)00299-8
|
[32] | Aurrecoechea C, Brestelli J, Brunk BP, Carlton JM, Dommer J, et al. (2009) GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis. Nucleic Acids Res 37: D526–530. doi: 10.1093/nar/gkn631
|
[33] | Yang JH, Shao P, Zhou H, Chen YQ, Qu LH (2010) deepBase: a database for deeply annotating and mining deep sequencing data. Nucleic Acids Res 38: D123–D130. doi: 10.1093/nar/gkp943
|
[34] | Franzén O, Jerlstr?m-Hultqvist J, Castro E, Sherwood E, Ankarklev J, et al. (2009) Draft genome sequencing of giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathog 5: e1000560. doi: 10.1371/journal.ppat.1000560
|
[35] | Liang WQ, Clark JA, Fournier MJ (1997) The rRNA processing function of the yeast U14 small nucleolar RNA can be rescued by a conserved RNA helicase-like protein. Mol Cell Biol 17: 4124–4132.
|
[36] | Prucca CG, Slavin I, Quiroga R, Elías EV, Rivero FD, et al. (2008) Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 456: 750–754. doi: 10.1038/nature07585
|
[37] | Watkins NJ, Lemm I, Ingelfinger D, Schneider C, Hossbach M, et al. (2004) Assembly and maturation of the U3 snoRNP in the nucleoplasm in a large dynamic multiprotein complex. Mol Cell 16: 789–798. doi: 10.1016/j.molcel.2004.11.012
|
[38] | Peculis BA (2001) SnoRNA nuclear import and potential for cotranscriptional function in pre-rRNA processing. RNA 7: 207–219. doi: 10.1017/S1355838201001625
|
[39] | Watkins NJ, Lemm I, Lührmann R (2007) Involvement of nuclear import and export factors in U8 box C/D snoRNP biogenesis. Mol Cell Biol 27: 7018–7027. doi: 10.1128/MCB.00516-07
|
[40] | Chen LM, Chern Y, Ong SJ, Tai JH (1994) Molecular cloning and characterization of a ras-related gene of ran/tc4/spi1 subfamily in Giardia lamblia. J Biol Chem 269: 17297–17304.
|
[41] | Castanotto D, Lingeman R, Riggs AD, Rossi JJ (2009) CRM1 mediates nuclear-cytoplasmic shuttling of mature microRNAs. Proc Natl Acad Sci USA 106: 21655–21659. doi: 10.1073/pnas.0912384106
|
[42] | Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294: 858–862. doi: 10.1126/science.1065062
|
[43] | Faehnle CR, Joshua-Tor L (2007) Argonautes confront new small RNAs. Curr Opin Chem Biol 11: 569–577. doi: 10.1016/j.cbpa.2007.08.032
|
[44] | Zhang H, Ehrenkaufer GM, Pompey JM, Hackney JA, Singh U (2008) Small RNAs with 5′-polyphosphate termini associate with a Piwi-related protein and regulate gene expression in the single-celled eukaryote Entamoeba histolytica. PLoS Pathog 4: e1000219. doi: 10.1371/journal.ppat.1000219
|
[45] | Huang Y, Ji L, Huang Q, Vassylyev DG, Chen X, et al. (2009) Structural insights into mechanisms of the small RNA methyltransferase HEN1. Nature 461: 823–827. doi: 10.1038/nature08433
|
[46] | Li J, Yang Z, Yu B, Liu J, Chen X (2005) Methylation protects miRNAs and siRNAs from a 39-end uridylation activity in Arabidopsis. Curr Biol 15: 1501–1507. doi: 10.1016/j.cub.2005.07.029
|
[47] | Ramachandran V, Chen X (2008) Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321: 1490–1492. doi: 10.1126/science.1163728
|
[48] | Yang Z, Ebright YW, Yu B, Chen X (2006) HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Res 34: 667–675. doi: 10.1093/nar/gkj474
|
[49] | Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19: 92–105. doi: 10.1101/gr.082701.108
|
[50] | Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20. doi: 10.1016/j.cell.2004.12.035
|
[51] | Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, et al. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769–773. doi: 10.1038/nature03315
|
[52] | Rajewsky N (2006) microRNA target predictions in animals. Nat Genet 38: S8–S13. doi: 10.1038/ng1798
|
[53] | Wu S, Huang S, Ding J, Zhao Y, Liang L, et al. (2010) Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene 29: 2302–2308. doi: 10.1038/onc.2010.34
|
[54] | Shi H, Chamond N, Djikeng A, Tschudi C, Ullu E (2009) RNA interference in Trypanosoma brucei: role of the n-terminal RGG domain and the polyribosome association of Argonaute. J Biol Chem 284: 36511–36520. doi: 10.1074/jbc.M109.073072
|
[55] | Yao MC, Chao JL (2005) RNA-guided DNA deletion in Tetrahymena: an RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 39: 537–559. doi: 10.1146/annurev.genet.39.073003.095906
|
[56] | Sharp PA (1999) RNAi and double-strand RNA. Genes Dev 13: 139–141. doi: 10.1101/gad.13.2.139
|