全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Investigations of a Locally Acquired Case of Melioidosis in Southern AZ, USA

DOI: 10.1371/journal.pntd.0001347

Full-Text   Cite this paper   Add to My Lib

Abstract:

Melioidosis is caused by Burkholderia pseudomallei, a Gram-negative bacillus, primarily found in soils in Southeast Asia and northern Australia. A recent case of melioidosis in non-endemic Arizona was determined to be the result of locally acquired infection, as the patient had no travel history to endemic regions and no previous history of disease. Diagnosis of the case was confirmed through multiple microbiologic and molecular techniques. To enhance the epidemiological analysis, we conducted several molecular genotyping procedures, including multi-locus sequence typing, SNP-profiling, and whole genome sequence typing. Each technique has different molecular epidemiologic advantages, all of which provided evidence that the infecting strain was most similar to those found in Southeast Asia, possibly originating in, or around, Malaysia. Advancements in new typing technologies provide genotyping resolution not previously available to public health investigators, allowing for more accurate source identification.

References

[1]  Stewart T, Engelthaler DM, Blaney D, Tuanyok A, Wangsness E, et al. (2011) Epidemiology and Investigation of Melioidosis in Southern Arizona. Emerg Infect Dis 17(7): 1286–88. doi: 10.3201/eid1707.100661
[2]  Peacock SJ (2006) Melioidosis. Curr Opin Infect Dis 19: 421–428. doi: 10.1097/01.qco.0000244046.31135.b3
[3]  Rotz LD, Khan AS, Lillibridge SR, Ostroff SM, Hughes JM (2002) Public health assessment of potential biological terrorism agents. Emerg Infect Dis 8: 225–230. doi: 10.3201/eid0802.010164
[4]  Cheng AC, Currie BJ (2005) Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 18: 383–416. doi: 10.1128/CMR.18.2.383-416.2005
[5]  Centers for Disease Control and Prevention. 11 March 2005, posting date. Laboratory Preparedness for Emergencies. The Laboratory Response Network: Partners in Preparedness. http://www.bt.cdc.gov/lrn/. Accessed 2010 March 8.
[6]  Novak RT, Glass MB, Gee JE, Gal D, Mayo MJ, et al. (2006) Development and Evaluation of a Real-Time PCR Assay Targeting the Type III Secretion System of Burkholderia pseudomallei. J Clin Microbiol 44(1): 85–90. doi: 10.1128/JCM.44.1.85-90.2006
[7]  Tuanyok A, Auerbach RK, Brettin TS, Bruce DC, Munk AC, et al. (2007) A horizontal gene transfer event defines two distinct groups within Burkholderia pseudomallei that have dissimilar geographic distributions. J Bacteriol 189(24): 9044–9. doi: 10.1128/JB.01264-07
[8]  Tuanyok A, Leadem BR, Auerbach RK, Beckstrom-Sternberg SM, Beckstrom-Sternberg JS, et al. (2008) Genomic islands from five strains of Burkholderia pseudomallei. BMC Genomics 27(9): 566. doi: 10.1186/1471-2164-9-566
[9]  Ulrich MP, Norwood DA, Christensen DR, Ulrich RL (2006) Using real-time PCR to specifically detect Burkholderia mallei. J Med Microbiol 55(Pt 5): 551–9. doi: 10.1099/jmm.0.46350-0
[10]  Bowers JR, Engelthaler DM, Ginther JL, Pearson T, Peacock SJ (2010) BurkDiff: A Real-Time PCR Allelic Discrimination Assay for Burkholderia pseudomallei and B. mallei. PLoS One 5(11): e15413. doi: 10.1371/journal.pone.0015413
[11]  Godoy D, Randle G, Simpson AJ, Aanensen DM, Pitt TL (2003) Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J Clin Microbiol 41: 2068–2079. doi: 10.1128/JCM.41.5.2068-2079.2003
[12]  Multi Locus Sequence Typing – Burkholderia pseudomallei MLST [Internet]. London: Imperial College. [cited 2011 March 7]. http://bpseudomallei.mlst.net/.
[13]  Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959.
[14]  Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics 25: 1754–60. doi: 10.1093/bioinformatics/btp324
[15]  Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, et al. (2004) Versatile and open software for comparing large genomes. Genome Biology 5: R12. doi: 10.1186/gb-2004-5-2-r12
[16]  Pearson T, Giffard P, Beckstrom-Sternberg S, Auerbach R, Hornstra H, et al. (2009) Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer. BMC Biol 18: 78. doi: 10.1186/1741-7007-7-78
[17]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution. Mol Biol Evol. 2011 Aug 18. [Epub ahead of print]. doi: 10.1093/molbev/msr121
[18]  Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics. New York: Oxford University Press. 132 p.
[19]  McCormick JB, Sexton DJ, McMurray JG, Carey E, Hayes P, et al. (1975) Human-to-human transmission of Pseudomonas pseudomallei. Ann Intern Med 83(4): 512–3. doi: 10.7326/0003-4819-83-4-512
[20]  Holden MTG, Titball RW, Peacock SJ, Cerdeno-Tarraga AM, Crossman LC, et al. (2004) Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci USA 101: 14240–14245. doi: 10.1073/pnas.0403302101
[21]  Ulett GC, Currie BJ, Clair TW, Mayo M, Ketheesan N, et al. (2001) Burkholderia pseudomallei virulence: definition, stability and association with clonality. Microbes Infect 3(8): 621–31. doi: 10.1016/S1286-4579(01)01417-4
[22]  U'Ren JM, Schupp JM, Pearson T, Hornstra H, Friedman CL, et al. (2007) Tandem repeat regions within the Burkholderia pseudomallei genome and their application for high resolution genotyping. BMC Microbiol 30(7): 23. doi: 10.1186/1471-2180-7-23
[23]  Pearson T, U'Ren JM, Schupp JM, Allan GJ, Foster PG, et al. (2007) VNTR analysis of selected outbreaks of Burkholderia pseudomallei in Australia. Infect Genet Evol 7: 416–423. doi: 10.1016/j.meegid.2006.12.002
[24]  Cheng AC, Ward L, Godoy D, Norton R, Mayo M, et al. (2008) Genetic diversity of Burkholderia pseudomallei isolates in Australia. J Clin Microbiol 46(1): 249–254. doi: 10.1128/JCM.01725-07
[25]  Currie BJ, Thomas AD, Godoy D, Dance DA, Cheng AC, et al. (2007) Australian and Thai isolates of Burkholderia pseudomallei are distinct by multilocus sequence typing: revision of a case of mistaken identity. J Clin Microbiol 45(11): 3828–3829. doi: 10.1128/JCM.01590-07
[26]  Pearson T, Okinaka RT, Foster JT, Keim P (2009) Phylogenetic understanding of clonal populations in an era of whole genome sequencing. Infect Genet Evol 9: 1010–9. doi: 10.1016/j.meegid.2009.05.014
[27]  Keim P, Van Ert MN, Pearson T, Vogler AJ, Huynh LY, et al. (2004) Anthrax molecular epidemiology and forensics: using the appropriate marker for different evolutionary scales. Infect Genet Evol 4: 205–13. doi: 10.1016/j.meegid.2004.02.005
[28]  Engelthaler DM, Chiller T, Schupp JA, Colvin J, Beckstrom-Sternberg SM, et al. (2011) Next-generation sequencing of Coccidioides immitis isolated during cluster investigation. Emerg Infect Dis 17(2): 227–232. doi: 10.3201/eid1702.100620
[29]  Jeddeloh JA, Fritz DL, Waag DM, Hartings JM, Andrews GP (2003) Biodefense-driven murine model of pneumonic melioidosis. Infect Immun 71(1): 584–7. doi: 10.1128/IAI.71.1.584-587.2003
[30]  Ulett GC, Labrooy JT, Currie BJ, Barnes JL, Ketheesan N (2005) A model of immunity to Burkholderia pseudomallei: unique responses following immunization and acute lethal infection. Microbes Infect 7(11–12): 1263–75. Epub 2005 Jun 8. doi: 10.1016/j.micinf.2005.04.013
[31]  Cummings CA, Bormann Chung CA, Fang R, Barker M, Brzoska PM, et al. (2009) Whole-genome typing of Bacillus anthracis isolates by next-generation sequencing accurately and rapidly identifies strain-specific diagnostic polymorphisms. Forensic Sci Int Genet 2: 300–301. doi: 10.1016/j.fsigss.2009.08.097
[32]  Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EK, et al. (2010) Evolution of MRSA during hospital transmission and intercontinental spread. Science 327(5964): 469–74. doi: 10.1126/science.1182395
[33]  Lienau EK, Strain E, Wang C, Zheng J, Ottesen AR, et al. (2011) Identification of a Salmonellosis Outbreak by Means of Molecular Sequencing. N Engl J Med. 2011 Feb 23. 10.1056/NEJMc1100443 [Epub ahead of print].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133