[1] | Dobson SL (2003) Reversing Wolbachia-based population replacement. Trends Parasitol 19: 128–133. doi: 10.1016/S1471-4922(03)00002-3
|
[2] | Sinkins SP, Gould F (2006) Gene drive systems for insect disease vectors. Nat Rev Genet 7: 427–435. doi: 10.1038/nrg1870
|
[3] | Bourtzis K (2008) Wolbachia-based technologies for insect pest population control. Adv Exp Med Biol 627: 104–113. doi: 10.1007/978-0-387-78225-6_9
|
[4] | Saridaki A, Bourtzis K (2010) Wolbachia: more than just a bug in insect genitals. Curr Opin Microbiol 13: 67–72. doi: 10.1016/j.mib.2009.11.005
|
[5] | Cook PE, McGraw EA (2010) Wolbachia pipientis: an expanding bag of tricks to explore for disease control. Trends Parasitol 26: 373–375. doi: 10.1016/j.pt.2010.05.006
|
[6] | Werren JH, Windsor DM (2000) Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc R Soc Lond B 267: 1277–1285. doi: 10.1098/rspb.2000.1139
|
[7] | Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, et al. (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biology 6: 27. doi: 10.1186/1741-7007-6-27
|
[8] | Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiol Lett 281: 215–220. doi: 10.1111/j.1574-6968.2008.01110.x
|
[9] | Yen JH, Barr AR (1971) New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232: 657–658. doi: 10.1038/232657a0
|
[10] | Rasgon JL, Scott TW (2003) Wolbachia and cytoplasmic incompatibility in the California Culex pipiens mosquito species complex: parameter estimates and infection dynamics in natural populations. Genetics 165: 2029–2038.
|
[11] | O'Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89: 2699–2702. doi: 10.1073/pnas.89.7.2699
|
[12] | Xi Z, Khoo CC, Dobson SL (2005) Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310: 326–328. doi: 10.1126/science.1117607
|
[13] | Ruang-Areerate T, Kittayapong P (2006) Wolbachia transinfection in Aedes aegypti: a potential gene driver of dengue vectors. Proc Natl Acad Sci USA 103: 12534–12539. doi: 10.1073/pnas.0508879103
|
[14] | McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, et al. (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323: 141–144. doi: 10.1126/science.1165326
|
[15] | Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6: 741–751. doi: 10.1038/nrmicro1969
|
[16] | Engelstadter J, Hurst GDD (2009) The ecology and evolution of microbes that manipulate host reproduction. Annu Rev Ecol Evol Syst 40: 127–149. doi: 10.1146/annurev.ecolsys.110308.120206
|
[17] | Serbus LR, Casper-Lindley C, Landmann F, Sullivan W (2008) The genetics and cell biology of Wolbachia-host interactions. Annu Rev Genet 42: 683–707. doi: 10.1146/annurev.genet.41.110306.130354
|
[18] | Dobson SL, Fox CW, Jiggins FM (2002) The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proc R Soc Lond B 269: 437–445. doi: 10.1098/rspb.2001.1876
|
[19] | Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, et al. (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA 101: 15042–15045. doi: 10.1073/pnas.0403853101
|
[20] | Zabalou S, Apostolaki A, Livadaras I, Franz G, Robinson AS, et al. (2009) Incompatible insect technique: incompatible males from a Ceratitis capitata genetic sexing strain. Ent Exp Appl 132: 232–240. doi: 10.1111/j.1570-7458.2009.00886.x
|
[21] | Calvitti M, Moretti R, Lampazzi E, Bellini R, Dobson SL (2010) Characterization of a new Aedes albopictus (Diptera: Culicidae)-Wolbachia pipientis (Rickettsiales: Rickettsiaceae) symbiotic association generated by artificial transfer of the wPip strain from Culex pipiens (Diptera: Culicidae). J Med Entomol 47: 179–187. doi: 10.1603/ME09140
|
[22] | Apostolaki A, Livadaras I, Saridaki A, Chrysargyris A, Savakis C, et al. (2011) Transinfection of the olive fruit fly Bactrocera oleae with Wolbachia: towards a symbiont-based population control strategy. J Appl Entomol 135: 546–553. doi: 10.1111/j.1439-0418.2011.01614.x
|
[23] | Rasgon JL, Scott TW (2004) Impact of population age structure on Wolbachia transgene driver efficacy: ecologically complex factors and release of genetically modified mosquitoes. Insect Biochem Mol Biol 34: 707–713. doi: 10.1016/j.ibmb.2004.03.023
|
[24] | Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, et al. (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139: 1268–1278. doi: 10.1016/j.cell.2009.11.042
|
[25] | Kambris Z, Cook PE, Phuc HK, Sinkins SP (2009) Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 326: 134–136. doi: 10.1126/science.1177531
|
[26] | Kambris Z, Blagborough AM, Pinto SB, Blagrove MS, Godfray HC, et al. (2010) Wolbachia stimulates immune gene expression and inhibits plasmodium development in Anopheles gambiae. PLoS Pathog 6: e1001143. doi: 10.1371/journal.ppat.1001143
|
[27] | Barr AR (1982) The Culex pipiens complex. In: Tabachnik WJ, Rai KS, Narang S, editors. Recent developments in the genetics of insect disease vectors, Steiner WWM. Champaign: Stipes Publishing Company. pp. 551–572.
|
[28] | Sabatinelli G, Ranieri E, Gianzi FP, Papakay M, Cancrini G (1994) Role of Culex quinquefasciatus in the transmission of bancroftian filariasis in the Federal Islamic Republic of Comoros (Indian Ocean). Parasite 1: 71–76.
|
[29] | Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45: 371–391. doi: 10.1146/annurev.ento.45.1.371
|
[30] | Charrel RN, de Lamballerie X (2004) West Nile virus, an emerging arbovirus. Presse Med 33: 1521–1526. doi: 10.1016/S0755-4982(04)98977-4
|
[31] | Durand JP, Simon F, Tolou H (2004) West Nile virus: in France again, in humans and horses. Rev Prat 54: 703–710.
|
[32] | Komar N (2003) West Nile virus: epidemiology and ecology in North America. Adv Virus Res 61: 185–234. doi: 10.1016/s0065-3527(03)61005-5
|
[33] | Granwehr BP, Lillibridge KM, Higgs S, Mason PW, Aronson JF, et al. (2004) West Nile virus: where are we now? Lancet Infect Dis 4: 547–556. doi: 10.1016/S1473-3099(04)01128-4
|
[34] | Sissoko D, Giry C, Gabrié P, Tarantola A, Pettinelli F, et al. (2009) Rift Valley fever, Mayotte, 2007–2008. Emerg Infect Dis 15: 568–70. doi: 10.3201/eid1504.081045
|
[35] | Roger M (2011) Rift Valley Fever in ruminants, Republic of Comoros, 2009. Emerg Infect Dis 17: 1319–1320. doi: 10.3201/eid1707.102031
|
[36] | Duron O, Lagnel J, Raymond M, Bourtzis K, Fort P, et al. (2005) Transposable element polymorphism of Wolbachia in the mosquito Culex pipiens: evidence of genetic diversity, superinfection and recombination. Mol Ecol 14: 1561–1573. doi: 10.1111/j.1365-294X.2005.02495.x
|
[37] | Duron O, Raymond M, Weill M (2011) Many compatible Wolbachia strains coexist within natural populations of Culex pipiens mosquito. Heredity 106: 986–993. doi: 10.1038/hdy.2010.146
|
[38] | Atyame CM, Delsuc F, Pasteur N, Weill M, Duron O (2011) Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito. Mol Biol Evol 28(10): 2761–2772. doi: 10.1093/molbev/msr083
|
[39] | Laven H (1967) Speciation and evolution in Culex pipiens. In: Wright J, Pal R, editors. Genetics of Insect Vectors of Disease. (Amsterdam: Elsevier).
|
[40] | O'Neill SL, Paterson HE (1992) Crossing type variability associated with cytoplasmic incompatibility in Australian populations of the mosquito Culex quinquefasciatus Say. Med Vet Entomol 6: 209–216. doi: 10.1111/j.1365-2915.1992.tb00608.x
|
[41] | Guillemaud T, Pasteur N, Rousset F (1997) Contrasting levels of variability between cytoplasmic genomes and incompatibility types in the mosquito Culex pipiens. Proc R Soc Lond B 264: 245–251. doi: 10.1098/rspb.1997.0035
|
[42] | Duron O, Bernard C, Unal S, Berthomieu A, Berticat C, et al. (2006) Tracking factors modulating cytoplasmic incompatibilities in the mosquito Culex pipiens. Mol. doi: 10.1111/j.1365-294x.2006.02996.x
|
[43] | Atyame CM, Duron O, Tortosa P, Pasteur N, Fort P, et al. (2011) Multiple Wolbachia determinants control the evolution of cytoplasmic incompatibilities in Culex pipiens mosquito populations. Mol Ecol 20: 286–298. doi: 10.1111/j.1365-294X.2010.04937.x
|
[44] | Lindquist DA, Abusowa M, Hall MJ (1992) The New World screwworm fly in Libya: a review of its introduction and eradication. Med Vet Entomol 6: 2–8. doi: 10.1111/j.1365-2915.1992.tb00027.x
|
[45] | Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, et al. (2010) Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis 10: 295–311. doi: 10.1089/vbz.2009.0014
|
[46] | Collins SR, Weldon CW, Banos C, Taylor PW (2008) Effects of irradiation dose rate on quality and sterility of Queensland fruit flies, Bactrocera tryoni (Froggatt). Journal of Applied Entomology 132: 398–405. doi: 10.1111/j.1439-0418.2008.01284.x
|
[47] | Kumano N, Haraguchi D, Kohama T (2008) Effect of irradiation on mating performance and mating ability in the West Indian sweetpotato weevil, Euscepes postfasciatus. Entomologia Experimentalis et Applicata 127: 229–236. doi: 10.1111/j.1570-7458.2008.00706.x
|
[48] | Laven H (1967) Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 216: 383–384. doi: 10.1038/216383a0
|
[49] | Brelsfoard CL, Sechan Y, Dobson SL (2008) Interspecific hybridization yields strategy for South pacific filariasis vector elimination. PLoS Negl Trop Dis 2: e129. doi: 10.1371/journal.pntd.0000129
|
[50] | Duron O, Fort P, Weill M (2006) Hypervariable prophage WO sequences describe an unexpected high number of Wolbachia variants in the mosquito Culex pipiens. Proc R Soc Lond B 273: 495–502. doi: 10.1098/rspb.2005.3336
|
[51] | Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. In: Gelvin SB, Schilperoort RA, editors. Plant Molecular Biology Manuel, Volume A6. pp. 1–10. (Boston: Kluwer Academic Publishers).
|
[52] | Duron O, Boureux A, Echaubard P, Berthomieu A, Berticat C, et al. (2007) Variability and expression of ankyrin domain genes in Wolbachia variants infecting the mosquito Culex pipiens. J Bacteriol 189: 4442–4448. doi: 10.1128/JB.00142-07
|
[53] | Malcolm CA, Bourguet D, Ascolillo A, Rooker SJ, Garvey CF, et al. (1998) A sex-linked Ace gene, not linked to insensitive acetylcholinesterase-mediated insecticide resistance in Culex pipiens. Insect Mol Biol 7: 107–120. doi: 10.1046/j.1365-2583.1998.72055.x
|
[54] | Raymond M, Poulin E, Boiroux V, Dupont E, Pasteur N (1993) Stability of insecticide resistance due to amplification of esterase genes in Culex pipiens. Heredity 70: 301–307. doi: 10.1038/hdy.1993.43
|
[55] | Bourguet D, Foncesca D, Vourch G, Dubois MP, Chandre F, et al. (1998) The acetylcholinesterase gene ace: a diagnostic marker of the pipiens and quinquefasciatus forms of the Culex pipiens complex. J Amer Mosq Control Assoc 14: 390–396.
|
[56] | Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5: 150–163. doi: 10.1093/bib/5.2.150
|
[57] | Duron O, Weill M (2006) Wolbachia infection influences the development of Culex pipiens embryo in incompatible crosses. Heredity 96: 493–500. doi: 10.1038/sj.hdy.6800831
|
[58] | Crawley M (2007) The R Book. John Wiley & Sons Ltd, Chichester, UK.
|
[59] | Boyle L, O'Neill SL, Robertson HM, Karr TL (1993) Interspecific and intraspecific horizontal transfer of Wolbachia in Drosophila. Science 260: 1796–1799. doi: 10.1126/science.8511587
|
[60] | Poinsot D, Bourtzis K, Markakis G, Savakis C, Mercot H (1998) Wolbachia transfer from Drosophila melanogaster into D. simulans: Host effect and cytoplasmic incompatibility relationships. Genetics 150: 227–237.
|
[61] | Hornett EA, Duplouy AM, Davies N, Roderick GK, Wedell N, et al. (2008) You can't keep a good parasite down: evolution of a male-killer suppressor uncovers cytoplasmic incompatibility. Evolution 62: 1258–1263. doi: 10.1111/j.1558-5646.2008.00353.x
|
[62] | Walker T, Song S, Sinkins SP (2009) Wolbachia in the Culex pipiens group mosquitoes: Introgression and superinfection. Journal of Heredity 100: 192–196. doi: 10.1093/jhered/esn079
|
[63] | Singh KRP, Curtis CF, Krishnamurthy BS (1976) Partial loss of cytoplasmic incompatibility with age in males of Culex fatigans. Ann Trop Med Parasit 70: 463–465.
|
[64] | Hoffmann AA, Turelli M, Harshman LG (1990) Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 126: 933–948.
|
[65] | Turelli M, Hoffmann AA (1995) Cytoplasmic incompatibility in Drosophila simulans: dynamics and parameter estimates from natural populations. Genetics 140: 1319–1338.
|
[66] | Jamnongluk W, Kittayapong P, Baisley KJ, O'Neill SL (2000) Wolbachia infection and expression of cytoplasmic incompatibility in Armigeres subalbatus (Diptera: Culicidae). J Med Entomol 37: 53–57. doi: 10.1603/0022-2585-37.1.53
|
[67] | Kittayapong P, Mongkalangoon P, Baimai V, O'Neill SL (2002) Host age effect and expression of cytoplasmic incompatibility in field populations of Wolbachia-superinfected Aedes albopictus. Heredity 88: 270–274. doi: 10.1038/sj.hdy.6800039
|
[68] | Duron O, Fort P, Weil M (2007) Influence of aging on cytoplasmic incompatibility, sperm modification and Wolbachia density in Culex pipiens mosquitoes. Heredity 98: 368–374. doi: 10.1038/sj.hdy.6800948
|
[69] | Briegel H (1990) Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. Journal of Insect Physiology 36: 165–172. doi: 10.1016/0022-1910(90)90118-y
|
[70] | Clements AN (1992) The biology of mosquitoes, Volume 1: Development, nutrition and reproduction (London: Chapman and Hall).
|
[71] | Curtis CF, Brooks GD, Ansari MA, Grover KK, Krishnamurthy BS, et al. (1982) A field trial on control of Culex quinquefasciatus by release of males of a strain integrating cytoplasmic incompatibility and a translocation. Ent Exp Appl 31: 181. doi: 10.1111/j.1570-7458.1982.tb03133.x
|
[72] | Tantely ML, Tortosa P, Alout H, Berticat C, Berthomieu A, et al. (2010) Insecticide resistance in Culex pipiens quinquefasciatus and Aedes albopictus mosquitoes from La Reunion Island. Insect Biochem Mol Biol 40: 317–324. doi: 10.1016/j.ibmb.2010.02.005
|
[73] | Zabalou S, Apostolaki A, Pattas S, Veneti Z, Paraskevopoulos C, et al. (2008) Multiple rescue factors within a Wolbachia strain. Genetics 178: 2145–2160. doi: 10.1534/genetics.107.086488
|
[74] | Raymond M, Callaghan A, Fort P, Pasteur N (1991) Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature 350: 151–153. doi: 10.1038/350151a0
|
[75] | Bourtzis K, Robinson AS (2006) Insect pest control using Wolbachia and/or radiation. In: Bourtzis K, Miller T, editors. Insect Symbiosis 2. CRC Press, Boca Raton, FL, USA. pp. 225–246.
|
[76] | Papathanos PA, Bossin HC, Benedict MQ, Catteruccia F, Malcolm CA, et al. (2009) Sex separation strategies: past experience and new approaches. Malar J 8: S5. doi: 10.1186/1475-2875-8-S2-S5
|
[77] | Sweeny TL, Barr AR (1978) Sex ratio distortion caused by meiotic drive in a mosquito, Culex pipiens L. Genetics 88: 427–446.
|
[78] | Condon KC, Condon GC, Dafa'alla TH, Fu G, Phillips CE, et al. (2007) Genetic sexing through the use of Y-linked transgenes. Insect Biochem Mol Biol 37: 1168–1176. doi: 10.1016/j.ibmb.2007.07.006
|
[79] | Brelsfoard CL, St Clair W, Dobson SL (2009) Integration of irradiation with cytoplasmic incompatibility to facilitate a lymphatic filariasis vector elimination approach. Parasit Vectors 2: 38. doi: 10.1186/1756-3305-2-38
|
[80] | Ritchie SA, Johnson PH, Freeman AJ, Odell RG, Graham N, et al. (2011) A secure semi-field system for the study of Aedes aegypti. PLoS Negl Trop Dis 5: e988. doi: 10.1371/journal.pntd.0000988
|