全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Novel Structural Components of the Ventral Disc and Lateral Crest in Giardia intestinalis

DOI: 10.1371/journal.pntd.0001442

Full-Text   Cite this paper   Add to My Lib

Abstract:

Giardia intestinalis is a ubiquitous parasitic protist that is the causative agent of giardiasis, one of the most common protozoan diarrheal diseases in the world. Giardia trophozoites attach to the intestinal epithelium using a specialized and elaborate microtubule structure, the ventral disc. Surrounding the ventral disc is a less characterized putatively contractile structure, the lateral crest, which forms a continuous perimeter seal with the substrate. A better understanding of ventral disc and lateral crest structure, conformational dynamics, and biogenesis is critical for understanding the mechanism of giardial attachment to the host. To determine the components comprising the ventral disc and lateral crest, we used shotgun proteomics to identify proteins in a preparation of isolated ventral discs. Candidate disc-associated proteins, or DAPs, were GFP-tagged using a ligation-independent high-throughput cloning method. Based on disc localization, we identified eighteen novel DAPs, which more than doubles the number of known disc-associated proteins. Ten of the novel DAPs are associated with the lateral crest or outer edge of the disc, and are the first confirmed components of this structure. Using Fluorescence Recovery After Photobleaching (FRAP) with representative novel DAP::GFP strains we found that the newly identified DAPs tested did not recover after photobleaching and are therefore structural components of the ventral disc or lateral crest. Functional analyses of the novel DAPs will be central toward understanding the mechanism of ventral disc-mediated attachment and the mechanism of disc biogenesis during cell division. Since attachment of Giardia to the intestine via the ventral disc is essential for pathogenesis, it is possible that some proteins comprising the disc could be potential drug targets if their loss or disruption interfered with disc biogenesis or function, preventing attachment.

References

[1]  Hotez PJ (2008) Neglected infections of poverty in the United States of America. PLoS Negl Trop Dis 2: e256. doi: 10.1371/journal.pntd.0000256
[2]  Savioli L, Smith H, Thompson A (2006) Giardia and Cryptosporidium join the ‘Neglected Diseases Initiative’. Trends Parasitol 22: 203–208. doi: 10.1016/j.pt.2006.02.015
[3]  Land KM, Johnson PJ (1999) Molecular basis of metronidazole resistance in pathogenic bacteria and protozoa. Drug Resist Updat 2: 289–294. doi: 10.1054/drup.1999.0104
[4]  Barat LM, Bloland PB (1997) Drug resistance among malaria and other parasites. Infect Dis Clin North Am 11: 969–987. doi: 10.1016/S0891-5520(05)70400-1
[5]  Upcroft J, Samarawickrema N, Brown D, Upcroft P (1996) Mechanisms of metronidazole resistance in Giardia and Entamoeba. Abstracts of the Interscience Conference on Antimicrobial Agents and Chemotherapy 36: 47.
[6]  Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14: 447–475. doi: 10.1128/CMR.14.3.447-475.2001
[7]  Elmendorf HG, Dawson SC, McCaffery JM (2003) The cytoskeleton of Giardia lamblia. Int J Parasitol 33: 3–28. doi: 10.1016/S0020-7519(02)00228-X
[8]  Gillin FD, Reiner DS, McCaffery JM (1996) Cell biology of the primitive eukaryote Giardia lamblia. Annu Rev Microbiol 50: 679–705. doi: 10.1146/annurev.micro.50.1.679
[9]  Leclerc H, Schwartzbrod L, Dei-Cas E (2002) Microbial agents associated with waterborne diseases. Crit Rev Microbiol 28: 371–409. doi: 10.1080/1040-840291046768
[10]  Friend DS (1966) The fine structure of Giardia muris. J Cell Biol 29: 317–332. doi: 10.1083/jcb.29.2.317
[11]  Dawson SC, House SA (2010) Life with eight flagella: flagellar assembly and division in Giardia. Curr Opin Microbiol 13: 480–490. doi: 10.1016/j.mib.2010.05.014
[12]  House SA, Richter D, Pham JK, Dawson SC (2011) Giardia flagellar motility is not directly required to maintain attachment to surfaces. PLoS Pathog 7: e1002167. doi: 10.1371/journal.ppat.1002167
[13]  Holberton DV (1974) Attachment of Giardia-a hydrodynamic model based on flagellar activity. J Exp Biol 60: 207–221.
[14]  Hansen WR, Fletcher DA (2008) Tonic shock induces detachment of Giardia lamblia. PLoS Negl Trop Dis 2: e169. doi: 10.1371/journal.pntd.0000169
[15]  Hansen WR, Tulyathan O, Dawson SC, Cande WZ, Fletcher DA (2006) Giardia lamblia attachment force is insensitive to surface treatments. Eukaryot Cell 5: 781–783. doi: 10.1128/EC.5.4.781-783.2006
[16]  Feely DE, Erlandsen SL (1981) Isolation and purification of Giardia trophozoites from rat intestine. J Parasitol 67: 59–64. doi: 10.2307/3280779
[17]  Feely DE, Erlandsen SL (1982) Effect of cytochalasin-B, low Ca++ concentration, iodoacetic acid, and quinacrine-HCl on the attachment of Giardia trophozoites in vitro. J Parasitol 68: 869–873. doi: 10.2307/3280996
[18]  Inge PM, Edson CM, Farthing MJ (1988) Attachment of Giardia lamblia to rat intestinal epithelial cells. Gut 29: 795–801. doi: 10.1136/gut.29.6.795
[19]  Mariante RM, Vancini RG, Melo AL, Benchimol M (2005) Giardia lamblia: evaluation of the in vitro effects of nocodazole and colchicine on trophozoites. Exp Parasitol 110: 62–72. doi: 10.1016/j.exppara.2005.01.007
[20]  Sousa M, Concalves CA, Bairos VA, Poiares-Da-Silva J (2001) Adherence of Giardia lamblia trophozoites to Int-407 human intestinal cells. Clin Diagn Lab Immunol 8: 258–265. doi: 10.1128/CDLI.8.2.258-265.2001
[21]  Feely DE, Schollmeyer JV, Erlandsen SL (1982) Giardia spp.: distribution of contractile proteins in the attachment organelle. Exp Parasitol 53: 145–154. doi: 10.1016/0014-4894(82)90100-X
[22]  Crossley R, Holberton DV (1985) Assembly of 2.5 nm filaments from giardin, a protein associated with cytoskeletal microtubules in Giardia. J Cell Sci 78: 205–231.
[23]  Crossley R, Holberton DV (1983) Characterization of proteins from the cytoskeleton of Giardia lamblia. J Cell Sci 59: 81–103.
[24]  Holberton DV (1973) Fine structure of the ventral disk apparatus and the mechanism of attachment in the flagellate Giardia muris. J Cell Sci 13: 11–41.
[25]  Holberton DV (1981) Arrangement of subunits in microribbons from Giardia. J Cell Sci 47: 167–185.
[26]  Feely DE, Hoberton DV, Erlandsen SL (1990) The Biology of Giardia. In: Meyer EA, editor. Giardiasis. Amsterdam: Elsevier. pp. 11–50.
[27]  Dawson SC (2010) An insider's guide to the microtubule cytoskeleton of Giardia. Cell Microbiol 12: 588–598. doi: 10.1111/j.1462-5822.2010.01458.x
[28]  Weiland ME, McArthur AG, Morrison HG, Sogin ML, Svard SG (2005) Annexin-like alpha giardins: a new cytoskeletal gene family in Giardia lamblia. Int J Parasitol 35: 617–626. doi: 10.1016/j.ijpara.2004.12.009
[29]  Weiland ME, Palm JE, Griffiths WJ, McCaffery JM, Svard SG (2003) Characterisation of alpha-1 giardin: an immunodominant Giardia lamblia annexin with glycosaminoglycan-binding activity. Int J Parasitol 33: 1341–1351. doi: 10.1016/S0020-7519(03)00201-7
[30]  Bauer B, Engelbrecht S, Bakker-Grunwald T, Scholze H (1999) Functional identification of alpha-1 giardin as an annexin of Giardia lamblia. FEMS Microbiol Lett 173: 147–153. doi: 10.1016/s0378-1097(99)00064-6
[31]  Peattie DA (1990) The giardins of Giardia lamblia: genes and proteins with promise. Parasitol Today 6: 52–56. doi: 10.1016/0169-4758(90)90070-K
[32]  Palm JE, Weiland ME, Griffiths WJ, Ljungstrom I, Svard SG (2003) Identification of immunoreactive proteins during acute human giardiasis. J Infect Dis 187: 1849–1859. doi: 10.1086/375356
[33]  Nohria A, Alonso RA, Peattie DA (1992) Identification and characterization of gamma giardin and the gamma giardin gene from Giardia lamblia. Mol Biochem Parasitol 56: 27–37. doi: 10.1016/0166-6851(92)90151-9
[34]  Ellis JG, Davila M, Chakrabarti R (2003) Potential involvement of extracellular signal-regulated kinase 1 and 2 in encystation of a primitive eukaryote, Giardia lamblia. Stage-specific activation and intracellular localization. J Biol Chem 278: 1936–1945. doi: 10.1074/jbc.M209274200
[35]  Davids BJ, Williams S, Lauwaet T, Palanca T, Gillin FD (2008) Giardia lamblia aurora kinase: a regulator of mitosis in a binucleate parasite. Int J Parasitol 38: 353–369. doi: 10.1016/j.ijpara.2007.08.012
[36]  Lauwaet T, Smith AJ, Reiner DS, Romijn EP, Wong CC, et al. (2011) Mining the Giardia genome and proteome for conserved and unique basal body proteins. Int J Parasitol 41: 1079–1092. doi: 10.1016/j.ijpara.2011.06.001
[37]  Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, et al. (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17: 676–682. doi: 10.1038/10890
[38]  Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, et al. (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317: 1921–1926. doi: 10.1126/science.1143837
[39]  Dawson SC, House SA (2010) Imaging and analysis of the microtubule cytoskeleton in Giardia. Methods Cell Biol 97: 307–339. doi: 10.1016/S0091-679X(10)97017-9
[40]  Jenkins MC, O'Brien CN, Murphy C, Schwarz R, Miska K, et al. (2009) Antibodies to the ventral disc protein delta-giardin prevent in vitro binding of Giardia lamblia trophozoites. J Parasitol 95: 895–899. doi: 10.1645/GE-1851R.1
[41]  Keister DB (1983) Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77: 487–488. doi: 10.1016/0035-9203(83)90120-7
[42]  Holberton DV, Ward AP (1981) Isolation of the cytoskeleton from Giardia. Tubulin and a low-molecular-weight protein associated with microribbon structures. J Cell Sci 47: 139–166.
[43]  Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74: 5383–5392. doi: 10.1021/ac025747h
[44]  Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75: 4646–4658. doi: 10.1021/ac0341261
[45]  Sagolla MS, Dawson SC, Mancuso JJ, Cande WZ (2006) Three-dimensional analysis of mitosis and cytokinesis in the binucleate parasite Giardia intestinalis. J Cell Sci 119: 4889–4900. doi: 10.1242/jcs.03276
[46]  Davis-Hayman SR, Nash TE (2002) Genetic manipulation of Giardia lamblia. Mol Biochem Parasitol 122: 1–7. doi: 10.1016/S0166-6851(02)00063-4
[47]  Sullivan KF, Kay SA (1999) Green fluorescent proteins. San Diego, London: Academic Press. 386 p.
[48]  Zeng X, Kahana JA, Silver PA, Morphew MK, McIntosh JR, et al. (1999) Slk19p is a centromere protein that functions to stabilize mitotic spindles. J Cell Biol 146: 415–425. doi: 10.1083/jcb.146.2.415
[49]  Lauwaet T, Davids BJ, Torres-Escobar A, Birkeland SR, Cipriano MJ, et al. (2007) Protein phosphatase 2A plays a crucial role in Giardia lamblia differentiation. Mol Biochem Parasitol 152: 80–89. doi: 10.1016/j.molbiopara.2006.12.001
[50]  Franzen O, Jerlstrom-Hultqvist J, Castro E, Sherwood E, Ankarklev J, et al. (2009) Draft genome sequencing of Giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathog 5: e1000560. doi: 10.1371/journal.ppat.1000560
[51]  Jerlstrom-Hultqvist J, Franzen O, Ankarklev J, Xu F, Nohynkova E, et al. (2010) Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate. BMC Genomics 11: 543. doi: 10.1186/1471-2164-11-543
[52]  Boudeau J, Miranda-Saavedra D, Barton GJ, Alessi DR (2006) Emerging roles of pseudokinases. Trends Cell Biol 16: 443–452. doi: 10.1016/j.tcb.2006.07.003
[53]  Weisbrich A, Honnappa S, Jaussi R, Okhrimenko O, Frey D, et al. (2007) Structure-function relationship of CAP-Gly domains. Nat Struct Mol Biol 14: 959–967. doi: 10.1038/nsmb1291
[54]  Pfannenschmid F, Wimmer VC, Rios RM, Geimer S, Krockel U, et al. (2003) Chlamydomonas DIP13 and human NA14: a new class of proteins associated with microtubule structures is involved in cell division. J Cell Sci 116: 1449–1462. doi: 10.1242/jcs.00337
[55]  Marshall J, Holberton DV (1993) Sequence and structure of a new coiled coil protein from a microtubule bundle in Giardia. J Mol Biol 231: 521–530. doi: 10.1006/jmbi.1993.1303
[56]  Holberton DV (1973) Mechanism of attachment of Giardia to the wall of the small intestine. Trans R Soc Trop Med Hyg 67: 29–30. doi: 10.1016/0035-9203(73)90299-X
[57]  Erlandsen SL, Russo AP, Turner JN (2004) Evidence for adhesive activity of the ventrolateral flange in Giardia lamblia. J Eukaryot Microbiol 51: 73–80. doi: 10.1111/j.1550-7408.2004.tb00165.x
[58]  Mueller J, Jones AL, Brandborg LL (1974) Scanning electron microscope observation in human giardiasis. In: Johari O, editor. Scanning electron microscopy. Chicago: IIT Research Institute. pp. 557–564.
[59]  Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, et al. (2010) The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140: 631–642. doi: 10.1016/j.cell.2010.01.032
[60]  Weber K, Geisler N, Plessmann U, Bremerich A, Lechtreck KF, et al. (1993) SF-assemblin, the structural protein of the 2-nm filaments from striated microtubule associated fibers of algal flagellar roots, forms a segmented coiled coil. J Cell Biol 121: 837–845. doi: 10.1083/jcb.121.4.837
[61]  Quarmby LM, Mahjoub MR (2005) Caught Nek-ing: cilia and centrioles. J Cell Sci 118: 5161–5169. doi: 10.1242/jcs.02681
[62]  Parker JD, Bradley BA, Mooers AO, Quarmby LM (2007) Phylogenetic analysis of the Neks reveals early diversification of ciliary-cell cycle kinases. PLoS One 2: e1076. doi: 10.1371/journal.pone.0001076
[63]  Kannan N, Taylor SS (2008) Rethinking pseudokinases. Cell 133: 204–205. doi: 10.1016/j.cell.2008.04.005
[64]  Tumova P, Kulda J, Nohynkova E (2007) Cell division of Giardia intestinalis: assembly and disassembly of the adhesive disc, and the cytokinesis. Cell Motil Cytoskeleton 64: 288–298. doi: 10.1002/cm.20183
[65]  Sedgwick SG, Smerdon SJ (1999) The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci 24: 311–316. doi: 10.1016/S0968-0004(99)01426-7
[66]  Elmendorf HG, Rohrer SC, Khoury RS, Bouttenot RE, Nash TE (2005) Examination of a novel head-stalk protein family in Giardia lamblia characterised by the pairing of ankyrin repeats and coiled-coil domains. Int J Parasitol 35: 1001–1011. doi: 10.1016/j.ijpara.2005.03.009
[67]  Davis LH, Otto E, Bennett V (1991) Specific 33-residue repeat(s) of erythrocyte ankyrin associate with the anion exchanger. J Biol Chem 266: 11163–11169.
[68]  Piva B, Benchimol M (2004) The median body of Giardia lamblia: an ultrastructural study. Biol Cell 96: 735–746. doi: 10.1016/j.biolcel.2004.05.006
[69]  Paredez AR, Assaf ZJ, Sept D, Timofejeva L, Dawson SC, et al. (2011) An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins. Proc Natl Acad Sci U S A 108: 6151–6156. doi: 10.1073/pnas.1018593108
[70]  Nabeshima K, Saitoh S, Yanagida M (1997) Use of green fluorescent protein for intracellular protein localization in living fission yeast cells. Methods Enzymol 283: 459–471. doi: 10.1016/s0076-6879(97)83037-6
[71]  Bloom KS, Beach DL, Maddox P, Shaw SL, Yeh E, Salmon ED (1999) Using green fluorescent protein fusion proteins to quantitate microtubule and spindle dynamics in budding yeast. In: Rieder CL, editor. Methods in Cell Biology. San Diego: Academic Press. pp. 369–383.
[72]  Dawson SC, Sagolla MS, Mancuso JJ, Woessner DJ, House SA, et al. (2007) Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryot Cell 6: 2354–2364. doi: 10.1128/EC.00128-07
[73]  Touz MC, Conrad JT, Nash TE (2005) A novel palmitoyl acyl transferase controls surface protein palmitoylation and cytotoxicity in Giardia lamblia. Mol Microbiol 58: 999–1011. doi: 10.1111/j.1365-2958.2005.04891.x
[74]  Carpenter ML, Cande WZ (2009) Using morpholinos for gene knockdown in Giardia intestinalis. Eukaryot Cell 8: 916–919. doi: 10.1128/EC.00041-09
[75]  Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797. doi: 10.1093/nar/gkh340
[76]  Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java alignment editor. Bioinformatics 20: 426–427. doi: 10.1093/bioinformatics/btg430

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133