全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Incrimination of Phlebotomus kandelakii and Phlebotomus balcanicus as Vectors of Leishmania infantum in Tbilisi, Georgia

DOI: 10.1371/journal.pntd.0001609

Full-Text   Cite this paper   Add to My Lib

Abstract:

A survey of potential vector sand flies was conducted in the neighboring suburban communities of Vake and Mtatsminda districts in an active focus of visceral Leishmaniasis (VL) in Tbilisi, Georgia. Using light and sticky-paper traps, 1,266 male and 1,179 female sand flies were collected during 2006–2008. Five Phlebotomus species of three subgenera were collected: Phlebotomus balcanicus Theodor and Phlebotomus halepensis Theodor of the subgenus Adlerius; Phlebotomus kandelakii Shchurenkova and Phlebotomus wenyoni Adler and Theodor of the subgenus Larroussius; Phlebotomus sergenti Perfil'ev of the subgenus Paraphlebotomus. Phlebotomus sergenti (35.1%) predominated in Vake, followed by P. kandelakii (33.5%), P. balcanicus (18.9%), P. halepensis (12.2%), and P. wenyoni (0.3%). In Mtatsminda, P. kandelakii (76.8%) comprised over three fourths of collected sand flies, followed by P. sergenti (12.6%), P. balcanicus (5.8%), P. halepensis (3.7%), and P. wenyoni (1.1%). The sand fly season in Georgia is exceptionally short beginning in early June, peaking in July and August, then declining to zero in early September. Of 659 female sand flies examined for Leishmania, 12 (1.8%) specimens without traces of blood were infected including 10 of 535 P. kandelakii (1.9%) and two of 40 P. balcanicus (5.0%). Six isolates were successfully cultured and characterized as Leishmania by PCR. Three isolates from P. kandelakii (2) and P. balcanicus (1) were further identified as L. infantum using sequence alignment of the 70 kDa heat-shock protein gene. Importantly, the sand fly isolates showed a high percent identity (99.8%–99.9%) to human and dog isolates from the same focus, incriminating the two sand fly species as vectors. Blood meal analysis showed that P. kandelakii preferentially feeds on dogs (76%) but also feeds on humans. The abundance, infection rate and feeding behavior of P. kandelakii and the infection rate in P. balcanicus establish these species as vectors in the Tbilisi VL focus.

References

[1]  Lemer M (1955) Some problems of biology of sandflies in the natural nidi of visceral leishmaniasis of Georgia. pp. 409–414. Sborn Rabot 3 Posvyashch 70 -Let Yubil E N Pavlovskii, Moskva.
[2]  Maruashvili G (1961) About types of visceral leishmaniasis foci (Russian). Medical Parasitology (Moscow) 30: 188–190.
[3]  Chubabria G, Zenaishvili O (2003) Modern concepts of visceral leishmaniasis in Georgia (Russian). Medical Parasitology (Moscow) 2: 27–30.
[4]  Giorgobiani E, Chitadze N, Chanturya G, Grdzelidze M, Jochim RC, et al. (2011) Epidemiologic aspects of an emerging focus of visceral leishmaniasis in Tbilisi, Georgia. PLoS Negl Trop Dis 5: e1415. doi: 10.1371/journal.pntd.0001415
[5]  Killick-Kendrick R (1990) Phlebotomine vectors of the leishmaniases: a review. Med Vet Entomol 4: 1–24. doi: 10.1111/j.1365-2915.1990.tb00255.x
[6]  Ready PD (2010) Leishmaniasis emergence in Europe. Euro Surveill 15: 19505.
[7]  Artemiev MM, Neronov VM (1984) Distribution and ecology of sandflies of the Old World. Moscow 207.
[8]  Rassi Y, Javadian E, Nadim A (1997) Natural promastigote Infection of sandflies and its first occurrence in S. dentata in Ardebil province, North West of Iran Iranian. J Public Health 6: 7–12.
[9]  Rassi Y, Firouzi R, Javadian E (2000) Position of visceral leishmaniosis vectors in the Kaleibar focus, East Azarbaijan Province Modarres. J Med Sciences 3: 9–14.
[10]  Oshaghi MA, Ravasan NM, Javadian EA, Mohebali M, Hajjaran H, et al. (2009) Vector incrimination of sand flies in the most important visceral leishmaniasis focus in Iran. Am J Trop Med Hyg 81: 572–577. doi: 10.4269/ajtmh.2009.08-0469
[11]  Gugushvili G, Sekhniashvili E, Lomtadze Z, Zerekidze L, Molashvili L (2001) About changes in population of transmissible disease vectors. The collection of works of Research Institute of Medical Parasitology and Tropical Medicine, honored to 75th Year of its Foundation (December, 1999), XXXIII, 29–34; Chubabria G, Zenaishvili O, Gugushvili G, Zikarishvili L, Topuria I et al., editors. Tbilisi.
[12]  Young DG, Duncan MA (1994) Guide to the identification and geographic distribution of Lutzomyia sand flies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae). Memoirs of the American Entomological Institute. Gainesville: Associated Publishers. 881 p.
[13]  Artemiev MM (1978) Sandflies (Diptera, Psychodidae) of Afghanistan. 87 p. Kabul.
[14]  Lawyer PG, Young DG (1992) Diapause and quiescence in the neotropical sand fly Lutzomyia diabolica (Hall). Parassitologia 33: Suppl 1353–360.
[15]  Anders G, Eisenberger CL, Jonas F, Greenblatt CL (2002) Distinguishing Leishmania tropica and Leishmania major in the Middle East using the polymerase chain reaction with kinetoplast DNA-specific primers. Trans R Soc Trop Med Hyg 96: Suppl 1S87–92. doi: 10.1016/S0035-9203(02)90057-X
[16]  Smith DF, Searle S, Ready PD, Gramiccia M, Ben-Ismail R (1989) A kinetoplast DNA probe diagnostic for Leishmania major: sequence homologies between regions of Leishmania minicircles. Mol Biochem Parasitol 37: 213–223. doi: 10.1016/0166-6851(89)90153-9
[17]  Garcia L, Kindt A, Bermudez H, Llanos-Cuentas A, De Doncker S, et al. (2004) Culture-independent species typing of neotropical Leishmania for clinical validation of a PCR-based assay targeting heat shock protein 70 genes. J Clin Microbiol 42: 2294–2297. doi: 10.1128/JCM.42.5.2294-2297.2004
[18]  Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882. doi: 10.1093/nar/25.24.4876
[19]  Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5: 150–163. doi: 10.1093/bib/5.2.150
[20]  Kent RJ, Norris DE (2005) Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome B. Am J Trop Med Hyg 73: 336–342.
[21]  Rogers ME, Chance ML, Bates PA (2002) The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology 124: 495–507. doi: 10.1017/S0031182002001439
[22]  Rassi Y, Javadian E, Nadim A, Zahraii A, Vatandoost H, et al. (2005) Phlebotomus (Larroussius) kandelakii the principal and proven vector of visceral leishmaniasis in North West of Iran. Pakistan J Biological Sci 8: 1802–1806.
[23]  Ivovic V, Patakakis M, Tselentis Y, Chaniotis B (2007) Faunistic study of sandflies in Greece. Med Vet Entomol 21: 121–124. doi: 10.1111/j.1365-2915.2006.00649.x
[24]  Ready P (2000) Sand fly evolution and its relationship to Leishmania transmission. Mem Inst Oswaldo Cruz 95: 589–590. doi: 10.1590/S0074-02762000000400024
[25]  Di Muccio T, Marinucci M, Frusteri L, Maroli M, Pesson B, et al. (2000) Phylogenetic analysis of Phlebotomus species belonging to the subgenus Larroussius (Diptera, psychodidae) by ITS2 rDNA sequences. Insect Biochem Mol Biol 30: 387–393. doi: 10.1016/S0965-1748(00)00012-6
[26]  Killick-Kendrick R, Rioux JA (1981) The Cevennes focus of leishmaniasis in Southern France and the biology of the vector, Phlebotomus ariasi. In: Canning EU, editor. Parasitological Topics, Society of Protozoologists, Special Publication No 1. pp. 136–145.
[27]  Killick-Kendrick R, Killick-Kendrick M (1987) The laboratory colonization of Phlebotomus ariasi (Diptera: Psychodidae). Ann Parasitol Hum Comp 62: 354–356.
[28]  Killick-Kendrick R, Ward RD (1981) Ecology of Leishmania. Proc. 3rd Eur. Multicoll. Parasitol., Cambridge. Parasitology 82: 143–152.
[29]  Bray RS (1982) The zoonotic potential of reservoirs of leishmaniasis in the Old World. Ecol Dis 1: 257–267.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133