Background The protozoan parasite Giardia intestinalis and the pathogenic bacterium Helicobacter pylori are well known for their high prevalences in human hosts worldwide. The prevalence of both organisms is known to peak in densely populated, low resource settings and children are infected early in life. Different Giardia genotypes/assemblages have been associated with different symptoms and H. pylori with induction of cancer. Despite this, not much data are available from sub-Saharan Africa with regards to the prevalence of different G. intestinalis assemblages and their potential association with H. pylori infections. Methodology/Principal Findings Fecal samples from 427 apparently healthy children, 0–12 years of age, living in urban Kampala, Uganda were analyzed for the presence of H. pylori and G. intestinalis. G. intestinalis was found in 86 (20.1%) out of the children and children age 1<5 years had the highest rates of colonization. H. pylori was found in 189 (44.3%) out of the 427 children and there was a 3-fold higher risk of concomitant G. intestinalis and H. pylori infections compared to non-concomitant G. intestinalis infection, OR = 2.9 (1.7–4.8). No significant association was found in the studied population with regard to the presence of Giardia and gender, type of toilet, source of drinking water or type of housing. A panel of 45 G. intestinalis positive samples was further analyzed using multi-locus genotyping (MLG) on three loci, combined with assemblage-specific analyses. Giardia MLG analysis yielded a total of five assemblage AII, 25 assemblage B, and four mixed assemblage infections. The assemblage B isolates were highly genetically variable but no significant association was found between Giardia assemblage type and H. pylori infection. Conclusions/Significance This study shows that Giardia assemblage B dominates in children in Kampala, Uganda and that the presence of H. pylori is an associated risk factor for G. intestinalis infection.
References
[1]
Cox FE (2001) Concomitant infections, parasites and immune responses. Parasitology 122 Suppl: S23–38. doi: 10.1017/S003118200001698X
[2]
Moreira ED Jr, Nassri VB, Santos RS, Matos JF, de Carvalho WA, et al. (2005) Association of Helicobacter pylori infection and giardiasis: results from a study of surrogate markers for fecal exposure among children. World J Gastroenterol 11: 2759–2763.
[3]
Zeyrek D, Zeyrek F, Cakmak A, Cekin A (2008) Association of Helicobacter pylori and giardiasis in children with recurrent abdominal pain. Turkiye Parazitol Derg 32: 4–7.
[4]
Isaeva G, Efimova NG (2010) [Gastrointestinal giardiasis associated with Helicobacter pylori]. Eksp Klin Gastroenterol: 30–34.
[5]
Hestvik E, Tylleskar T, Kaddu-Mulindwa DH, Ndeezi G, Grahnquist L, et al. (2010) Helicobacter pylori in apparently healthy children aged 0–12 years in urban Kampala, Uganda: a community-based cross sectional survey. BMC Gastroenterol 10: 62. doi: 10.1186/1471-230X-10-62
[6]
Tellez A, Morales W, Rivera T, Meyer E, Leiva B, et al. (1997) Prevalence of intestinal parasites in the human population of Leon, Nicaragua. Acta Trop 66: 119–125. doi: 10.1016/S0001-706X(97)00037-5
[7]
Prado MS, Cairncross S, Strina A, Barreto ML, Oliveira-Assis AM, et al. (2005) Asymptomatic giardiasis and growth in young children; a longitudinal study in Salvador, Brazil. Parasitology 131: 51–56. doi: 10.1017/S0031182005007353
[8]
Suerbaum S, Josenhans C (2007) Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat Rev Microbiol 5: 441–452. doi: 10.1038/nrmicro1658
[9]
Ankarklev J, Jerlstrom-Hultqvist J, Ringqvist E, Troell K, Svard SG (2010) Behind the smile: cell biology and disease mechanisms of Giardia species. Nat Rev Microbiol 8: 413–422. doi: 10.1038/nrmicro2317
[10]
Berkman DS, Lescano AG, Gilman RH, Lopez SL, Black MM (2002) Effects of stunting, diarrhoeal disease, and parasitic infection during infancy on cognition in late childhood: a follow-up study. Lancet 359: 564–571. doi: 10.1016/S0140-6736(02)07744-9
[11]
Farthing MJ (1996) Giardiasis. Gastroenterol Clin North Am 25: 493–515. doi: 10.1016/S0889-8553(05)70260-0
[12]
Lasek-Nesselquist E, Welch DM, Sogin ML (2010) The identification of a new Giardia duodenalis assemblage in marine vertebrates and a preliminary analysis of G. duodenalis population biology in marine systems. Int J Parasitol 40: 1063–1074. doi: 10.1016/j.ijpara.2010.02.015
[13]
Lebbad M, Mattsson JG, Christensson B, Ljungstrom B, Backhans A, et al. (2010) From mouse to moose: multilocus genotyping of Giardia isolates from various animal species. Vet Parasitol 168: 231–239. doi: 10.1016/j.vetpar.2009.11.003
[14]
Franzen O, Jerlstrom-Hultqvist J, Castro E, Sherwood E, Ankarklev J, et al. (2009) Draft genome sequencing of giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathog 5: e1000560. doi: 10.1371/journal.ppat.1000560
[15]
Haque R, Roy S, Kabir M, Stroup SE, Mondal D, et al. (2005) Giardia assemblage A infection and diarrhea in Bangladesh. J Infect Dis 192: 2171–2173. doi: 10.1086/498169
[16]
Lebbad M, Petersson I, Karlsson L, Botero-Kleiven S, Andersson JO, et al. (2011) Multilocus Genotyping of Human Giardia Isolates Suggests Limited Zoonotic Transmission and Association between Assemblage B and Flatulence in Children. PLoS Negl Trop Dis 5: e1262. doi: 10.1371/journal.pntd.0001262
[17]
Sahagun J, Clavel A, Goni P, Seral C, Llorente MT, et al. (2008) Correlation between the presence of symptoms and the Giardia duodenalis genotype. Eur J Clin Microbiol Infect Dis 27: 81–83. doi: 10.1007/s10096-007-0404-3
[18]
Gelanew T, Lalle M, Hailu A, Pozio E, Caccio SM (2007) Molecular characterization of human isolates of Giardia duodenalis from Ethiopia. Acta Trop 102: 92–99. doi: 10.1016/j.actatropica.2007.04.003
[19]
Johnston AR, Gillespie TR, Rwego IB, McLachlan TL, Kent AD, et al. (2010) Molecular epidemiology of cross-species Giardia duodenalis transmission in western Uganda. PLoS Negl Trop Dis 4: e683. doi: 10.1371/journal.pntd.0000683
[20]
Hestvik E, Tumwine JK, Tylleskar T, Grahnquist L, Ndeezi G, et al. (2011) Faecal calprotectin concentrations in apparently healthy children aged 0–12 years in urban Kampala, Uganda: a community-based survey. BMC Pediatr 11: 9. doi: 10.1186/1471-2431-11-9
[21]
Kato S, Ozawa K, Okuda M, Nakayama Y, Yoshimura N, et al. (2004) Multicenter comparison of rapid lateral flow stool antigen immunoassay and stool antigen enzyme immunoassay for the diagnosis of Helicobacter pylori infection in children. Helicobacter 9: 669–673. doi: 10.1111/j.1083-4389.2004.00279.x
[22]
Nares-Cisneros J, Jaramillo-Rodriguez Y, Martinez-Ordaz VA, Velasco-Rodriguez VM, Madero A, et al. (2007) Immunochromatographic monoclonal test for detection of Helicobacter pylori antigen in stool is useful in children from high-prevalence developing country. Helicobacter 12: 354–358. doi: 10.1111/j.1523-5378.2007.00514.x
[23]
Lebbad M, Ankarklev J, Tellez A, Leiva B, Andersson JO, et al. (2008) Dominance of Giardia assemblage B in Leon, Nicaragua. Acta Trop 106: 44–53. doi: 10.1016/j.actatropica.2008.01.004
[24]
Lalle M, Pozio E, Capelli G, Bruschi F, Crotti D, et al. (2005) Genetic heterogeneity at the beta-giardin locus among human and animal isolates of Giardiaduodenalis and identification of potentially zoonotic subgenotypes. Int J Parasitol 35: 207–213. doi: 10.1016/j.ijpara.2004.10.022
[25]
Read CM, Monis PT, Thompson RC (2004) Discrimination of all genotypes of Giardia duodenalis at the glutamate dehydrogenase locus using PCR-RFLP. Infect Genet Evol 4: 125–130. doi: 10.1016/j.meegid.2004.02.001
Cooper MA, Sterling CR, Gilman RH, Cama V, Ortega Y, et al. (2010) Molecular analysis of household transmission of Giardia lamblia in a region of high endemicity in Peru. J Infect Dis 202: 1713–1721. doi: 10.1086/657142
[28]
Cooper MA, Adam RD, Worobey M, Sterling CR (2007) Population genetics provides evidence for recombination in Giardia. Curr Biol 17: 1984–1988. doi: 10.1016/j.cub.2007.10.020
[29]
Geurden T, Geldhof P, Levecke B, Martens C, Berkvens D, et al. (2008) Mixed Giardia duodenalis assemblage A and E infections in calves. Int J Parasitol 38: 259–264. doi: 10.1016/j.ijpara.2007.07.016
[30]
Geurden T, Levecke B, Caccio SM, Visser A, De Groote G, et al. (2009) Multilocus genotyping of Cryptosporidium and Giardia in non-outbreak related cases of diarrhoea in human patients in Belgium. Parasitology 136: 1161–1168. doi: 10.1017/S0031182009990436
[31]
Stamatakis A, Ludwig T, Meier H (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21: 456–463. doi: 10.1093/bioinformatics/bti191
[32]
Breathnach AS, McHugh TD, Butcher PD (2010) Prevalence and clinical correlations of genetic subtypes of Giardia lamblia in an urban setting. Epidemiol Infect 138: 1459–1467. doi: 10.1017/S0950268810000208
[33]
van der Giessen JW, de Vries A, Roos M, Wielinga P, Kortbeek LM, et al. (2006) Genotyping of Giardia in Dutch patients and animals: a phylogenetic analysis of human and animal isolates. Int J Parasitol 36: 849–858. doi: 10.1016/j.ijpara.2006.03.001
[34]
Yang R, Lee J, Ng J, Ryan U (2010) High prevalence Giardia duodenalis assemblage B and potentially zoonotic subtypes in sporadic human cases in Western Australia. Int J Parasitol 40: 293–297. doi: 10.1016/j.ijpara.2009.08.003
[35]
Caccio SM, Ryan U (2008) Molecular epidemiology of giardiasis. Mol Biochem Parasitol 160: 75–80. doi: 10.1016/j.molbiopara.2008.04.006
[36]
Wielinga C, Ryan U, Andrew Thompson RC, Monis P (2011) Multi-locus analysis of Giardia duodenalis intra-Assemblage B substitution patterns in cloned culture isolates suggests sub-Assemblage B analyses will require multi-locus genotyping with conserved and variable genes. Int J Parasitol 41: 495–503. doi: 10.1016/j.ijpara.2010.11.007
[37]
Xu F, Jerlstrom-Hultqvist J, Andersson JO (2012) Genome-Wide Analyses of Recombination Suggest That Giardia intestinalis Assemblages Represent Different Species. Mol Biol Evol doi: 10.1093/molbev/mss107
[38]
Vale FF, Vitor JM (2010) Transmission pathway of Helicobacter pylori: does food play a role in rural and urban areas? Int J Food Microbiol 138: 1–12. doi: 10.1016/j.ijfoodmicro.2010.01.016
[39]
Brogden KA, Guthmiller JM, Taylor CE (2005) Human polymicrobial infections. Lancet 365: 253–255. doi: 10.1016/S0140-6736(05)17745-9
[40]
Du Y, Agnew A, Ye XP, Robinson PA, Forman D, et al. (2006) Helicobacter pylori and Schistosoma japonicum co-infection in a Chinese population: helminth infection alters humoral responses to H. pylori and serum pepsinogen I/II ratio. Microbes Infect 8: 52–60. doi: 10.1016/j.micinf.2005.05.017
[41]
Higgins PD, Johnson LA, Luther J, Zhang M, Sauder KL, et al. (2011) Prior Helicobacter pylori infection ameliorates Salmonella typhimurium-induced colitis: mucosal crosstalk between stomach and distal intestine. Inflamm Bowel Dis 17: 1398–1408. doi: 10.1002/ibd.21489
[42]
Arnold IC, Dehzad N, Reuter S, Martin H, Becher B, et al. (2011) Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J Clin Invest 121: 3088–3093. doi: 10.1172/JCI45041
[43]
Sainsus N, Cattori V, Lepadatu C, Hofmann-Lehmann R (2008) Liquid culture medium for the rapid cultivation of Helicobacter pylori from biopsy specimens. Eur J Clin Microbiol Infect Dis 27: 1209–1217. doi: 10.1007/s10096-008-0567-6
[44]
Keister DB (1983) Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77: 487–488. doi: 10.1016/0035-9203(83)90120-7
[45]
Benere E, Geurden T, Robertson L, Van Assche T, Cos P, et al. (2010) Infectivity of Giardia duodenalis Assemblages A and E for the gerbil and axenisation of duodenal trophozoites. Parasitol Int 59: 634–637. doi: 10.1016/j.parint.2010.08.001
[46]
Matsumoto S, Washizuka Y, Matsumoto Y, Tawara S, Ikeda F, et al. (1997) Induction of ulceration and severe gastritis in Mongolian gerbil by Helicobacter pylori infection. J Med Microbiol 46: 391–397. doi: 10.1099/00222615-46-5-391
[47]
Windle HJ, Kelleher D, Crabtree JE (2007) Childhood Helicobacter pylori infection and growth impairment in developing countries: a vicious cycle? Pediatrics 119: e754–759. doi: 10.1542/peds.2006-2196