Background The presence of animal reservoirs in Schistosoma japonicum infection has been a major obstacle in the control of schistosomiasis. Previous studies have proven that the inclusion of control measures on animal reservoir hosts for schistosomiasis contributed to the decrease of human cases. Animal surveillance should therefore be included to strengthen and improve the capabilities of current serological tests. Methodology/Principal Findings Thioredoxin peroxidase-1 (SjTPx-1) and four tandem repeat proteins (Sj1TR, Sj2TR, Sj4TR, Sj7TR) were initially evaluated against human sera. The previous test showed high sensitivity and specificity for antibody detection against SjTPx-1 and Sj7TR. In this study, the immunodiagnostic potential of these recombinant proteins was evaluated using enzyme-linked immunoassay on 50 water buffalo serum samples collected in Cagayan, the Philippines as compared with the soluble egg antigen (SEA). For specificity, 3 goat serum samples positive with Fasciola hepatica were used and among the antigens used, only SEA showed cross-reaction. Stool PCR targeting the S. japonicum 82 bp mitochondrial NAD 1 gene was done to confirm the true positives and served as the standard test. Twenty three samples were positive for stool PCR. SjTPx-1 and Sj1TR gave the highest sensitivity among the recombinant proteins tested for water buffalo samples with 82.61% and 78.26% respectively which were higher than that of SEA (69.57%). Conclusions/Significance These results prove that SjTPx-1 works both for humans and water buffaloes making it a good candidate antigen for zoonotic diagnosis. Sj1TR showed good results for water buffaloes and therefore can also be used as a possible candidate for detecting animal schistosome infection.
References
[1]
He YX, Salafsky B, Ramaswamy K (2001) Host-parasite relationships of Schistosoma japonicum in mammalian hosts. Trends Parasitol 7: 320–324. doi: 10.1016/S1471-4922(01)01904-3
[2]
Guo J, Li Y, Gray D, Ning A, Hu G, et al. (2006) A drug-based intervention study on the importance of buffaloes for human Schistosoma japonicum infection around Poyang Lake, People's Republic of China. Am J Trop Med Hyg 74: 335–341.
[3]
Gray DJ, Williams GM, Li Y, Chen H, Forsyth SJ, et al. (2009) A cluster-randomized intervention trial against Schistosoma japonicum in the People's Republic of China: bovine and human transmission. PLoS One 4: e5900. doi: 10.1371/journal.pone.0005900
[4]
Fuhui S, Zhang Y, Lin J, Zuo X, Shen W, et al. (2002) Field testing of Schistosoma japonicum DNA vaccines in cattle in China. Vaccine 20: 3629–3631. doi: 10.1016/S0264-410X(02)00398-5
[5]
Izhar A, Sinaga RM, Sudomo M, Wardiyo ND (2002) Recent situation of schistosomiasis in Indonesia. Acta Tropica 82: 283–288. doi: 10.1016/S0001-706X(02)00020-7
[6]
Carabin H, Balolong E, Joseph L, McGarvey ST, Johansen MV, et al. (2005) Estimating sensitivity and specificity of a faecal examination for Schistosoma japonicum infection in cats, dogs, water buffaloes, pigs, and rats in Western Samar and Sorsogon Provinces, The Philippines. Int J Parasitol 35: 1517–1524. doi: 10.1016/j.ijpara.2005.06.010
[7]
Matsumoto J, Kirinoki M, Kawai S, Chigusa Y, Ilagan EJ, et al. (1999) Prevalence of schistosomiasis japonica among schoolchildren and animal reservoirs in Oriental Mindoro, Philippines. Jpn J Trop Med Hyg 27: 175–180. doi: 10.2149/tmh1973.27.175
[8]
Fernandez TJ, Tarafder MR, Balolong E, Joseph L, Willingham AL, et al. (2007) Prevalence of Schistosoma japonicum infection among animals in fifty villages of Samar province, the Philippines. Vector Borne Zoonotic Dis 7: 147–155. doi: 10.1089/vbz.2006.0565
[9]
Riley S, Carabin H, Belisle P, Joseph L, Tallo V, et al. (2008) Multi-host transmission dynamics of Schistosoma japonicum in Samar Province, the Philippines. PLoS Medicine 5: e18. doi: 10.1371/journal.pmed.0050018
[10]
Wu HW, Qin YF, Chu K, Meng R, Liu Y, et al. (2010) High Prevalence of Schistosoma japonicum Infection in Water Buffaloes in the Philippines Assessed by Real-Time Polymerase Chain Reaction. Am J Trop Med Hyg 82: 646–652. doi: 10.4269/ajtmh.2010.09-0638
[11]
Katz N, Chaves A, Pellegrino J (1972) A simple device for quantitative stool thick-smear technique in schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo 14: 397–400. doi: 10.2149/tmh1973.27.175
[12]
Peters PA, El Alamy M, Warren KS, Mahmoud AAF (1980) Quick Kato smear for field quantification of Schistosoma mansoni eggs. Am J Trop Med Hyg 29: 217–219.
[13]
World Health Organization (1993) The control of schistosomiasis: second report of the WHO Expert Committee. WHO Tech Rep Ser 830.
[14]
Zhang YY, Luo JP, Liu YM, Wang QZ, Chen JH, et al. (2009) Evaluation of Kato-Katz examination method in three areas with low-level endemicity of schistosomiasis japonica in China: A Bayesian modeling approach. Acta Tropica 112: 16–22. doi: 10.1016/j.actatropica.2009.05.020
[15]
Lier T, Simonsen GS, Wang T, Lu D, Haukland HH, et al. (2009) Low sensitivity of the formol-ethyl acetate sedimentation concentration technique in low-intensity Schistosoma japonicum infections. PLoS Negl Trop Dis 3: e386. doi: 10.1371/journal.pntd.0000386
[16]
Yu JM, de Vlas SJ, Jiang QW, Gryseels B (2007) Comparison of the Kato-Katz technique, hatching test and indirect hemagglutination assay (IHA) for the diagnosis of Schistosoma japonicum infection in China. Parasitol Int 57: 45–49. doi: 10.1016/j.parint.2006.11.002
[17]
Angeles JM, Goto Y, Kirinoki M, Leonardo LR, Tongol-Rivera P, et al. (2011) Human antibody response to thioredoxin peroxidase-1 and tandem repeat proteins as immunodiagnostic antigen candidates for Schistosoma japonicum infection. Am J Trop Med Hyg 85: 674–679. doi: 10.4269/ajtmh.2011.11-0245
[18]
Nuovo GJ, Silverstein SJ (1988) Comparison of formalin, buffered formalin, and Bouin's fixation on the detection of human papillomavirus deoxyribonucleic acid extracted from genital lesions. Lab Invest 59: 720–724.
[19]
Hamazaki S, Koshiba M, Habuchi T, Takahashi R, Sugiyama T (1993) The effect of formalin fixation on restriction endonuclease digestion of DNA and PCR amplification. Pathol Res Pract 189: 553–557. doi: 10.1016/S0344-0338(11)80365-1
[20]
Shibata D (1994) Extraction of DNA from paraffin-embedded tissue for analysis by polymerase chain reaction: new tricks from an old friend. Human Pathol 25: 561–563. doi: 10.1016/0046-8177(94)90219-4
[21]
Sorensen E, Bogh HO, Johansen MV, McManus DP (1999) PCR-based identification of individuals of Schistosoma japonicum representing different subpopulations using a genetic marker in mitochondrial DNA. Intl J Parasitol 29: 1121–1128.
[22]
Lier T, Simonsen GS, Haaheim H, Hjelmevol SO, Vennervald BJ, et al. (2006) Novel real-time PCR for detection of Schistosoma japonicum in stool. Southeast Asian J Trop Med Public Health 37: 257–264.
[23]
Hillyer GV, Ramzy RMR, El Alamy MA, Cline BL (1981) The circumoval precipitin test for the serodiagnosis of human schistosomiasis mansoni and haematobia. Am J Trop Med Hyg 30: 121–126.
[24]
Matsuda H, Tanaka H, Blas BL, Nosenas JS, Tokawa T, et al. (1984) Evaluation of ELISA with ABTS, 2-2′-azino-di-(3-ethylbenzthiazoline sulfonic acid), as the substrate of peroxidase and its application to the diagnosis of schistosomiasis. Jpn J Exp Med 54: 131–138.
[25]
Altman DG (1991) Inter-rater Agreement. Practical Statistics for Medical Research. London, UK: Chapman and Hall. 404 p.
[26]
Jin Y, Lu K, Zhou WF, Fu ZQ, Liu JM, et al. (2010) Comparison of recombinant proteins from Schistosoma japonicum for schistosomiasis diagnosis. Clin Vaccine Immunol 17: 476–480. doi: 10.1128/CVI.00418-09
[27]
Wongratanacheewin S, Pumidonming W, Sermswan RW, Pipitgool V, Maleewong W (2002) Detection of Opistorchis viverrini in human stool specimens by PCR. J Clin Microbiol 40: 3879–3880. doi: 10.1128/JCM.40.10.3879-3880.2002
[28]
Moon JH, Cjo SH, Yu JR, Lee WJ, Cheun HI (2011) PCR diagnosis of Entamoeba histolytica cysts in stool samples. Korean J Parasitol 49: 281–284. doi: 10.3347/kjp.2011.49.3.281
[29]
Yang J, Fu Z, Feng X, Shi Y, Yuan C, et al. (2012) Comparison of worm development and host immune responses in natural hosts of Schistosoma japonicum, yellow cattle and water buffalo. BMC Vet Res 8: 25. doi: 10.1186/1746-6148-8-25
[30]
Liang S, Yang C, Qiu D (2006) Re-emerging schistosomiasis in hilly and mountainous areas of Sichuan, China. Bull WHO 84: 139–144. doi: /S0042-96862006000200015
[31]
Carlton EJ, Bates MN, Zhong B, Seto EYW, Spear RC (2011) Evaluation of mammalian and intermediate host surveillance methods for detecting schistosomiasis reemergence in Southwest China. PLoS Negl Trop Dis 5 (3): e987. doi: 10.1371/journal.pntd.0000987
[32]
World Health Organization (2009) Elimination of schistosomiasis from low transmission areas: Report of a WHO informal consultation. WHO/HTM/NTD/PCT/2009.2.
[33]
Spear RC, Seto EYW, Carlton EJ, Liang S, Remais JV, et al. (2011) The challenge of effective surveillance in moving from low transmission to elimination of schistosomiasis in China. Int J Parasitol 41: 1243–1247. doi: 10.1016/j.ijpara.2011.08.002
[34]
Belizario VY, Martinez RM, de Leon WU, Esparar DG, Navarro JRP, et al. (2005) Cagayan Valley: a newly described endemic focus for schistosomiasis japonicum in the Philippines. Philipp J Intern Med 43: 117–122.
[35]
McGarvey ST, Carabin H, Balolong E, Belisle P, Fernandez T, et al. (2006) Cross-sectional associations between intensity of animal and human infection with Schistosoma japonicum in Western Samar province, Philippines. Bull WHO 84: 446–452. doi: /S0042-96862006000600013
[36]
Bergquist R, Johansen MV, Utzinger J (2009) Diagnostic dilemmas in helminthology: what tools to use and when? Trends Parasitol 25: 151–156. doi: 10.1016/j.pt.2009.01.004